If you're seeing this message, it means we're having trouble loading external resources on our website.

If you're behind a web filter, please make sure that the domains *.kastatic.org and *.kasandbox.org are unblocked.

### Course: Pixar in a Box>Unit 5

Lesson 2: Color spaces

# HSL color space

Uncover the magic of hue, saturation, and lightness (HSL) in color creation using the hue saturation wheel, where hue is defined by the angle and saturation is defined by the radius. Adjusting the lightness dimension creates lighter or darker shades of any color on the hue saturation wheel, effectively fine-tuning the final color to match your desired outcome.

## Want to join the conversation?

• Ok, so now we just learned about the color wheel and the color cube. And now in this video now we learned the color cylinder. Are there any more color "things" like that?
• There are some cones in some models. And the shape of the colors an actual imaging device is capable of displaying is a weird horseshoe shape. The cube and cylinder are the most important models for color science, though. Everything else fits inside them.
• At , how come RGB aren't natural for artists to use?
• It's possible for artists to use RGB to come up with colors, but it takes a lot of practice to remember how they relate to each other. RGB is counterintuitive to everything we learn about mixing paints to make colors. Instead of Blue and Yellow make Green, We have Red and Green make Yellow. So the HSL model is just a method that is easier for most people to learn and use.
• I'm still a little confused, what's the difference between saturation and lightness? They do basically the same thing.
• Saturation is how vibrant a color is and lightness is how light or dark it is. A color can be dark without being saturated and light while being saturated.
• why artists don't use RGB colors
• Most of them, use HSL system. It's most visuable, so they can find the exact color they need.
• Were those mathematicians artists? Or why did they decide to see color spatially?
• They were likely computer programmers. Both math and color are huge parts of creating the displays you see today, and they are rarely mutually exclusive. Keeping track of masses of numbers and what they do can be confusing to even the most experienced mathematician, and the brain tends to absorb knowledge and comprehend what it's learned better when said knowledge is presented visually. So, to provide a better visual for what they were doing with numbers to help them create colors more easily and without so many numbers, they created all the tools you just learned about.
• In the color cylinder, if the light increases on top, shouldn't the whole top surface of the cylinder be completely white?
If that is true, and supposing that's true for black too, isn't it enough for the top and bottom surfaces to be just dots? White and black respectively. In that case, I think that the shape would be a sphere, which is closer to the cube, meaning it's the same thing but smoother.
• i jast realised that you can use a coler weel