Main content

### Course: Equations & Inequalities 229-236 > Unit 2

Lesson 1: Graphing proportional relationships- Rates & proportional relationships example
- Rates & proportional relationships: gas mileage
- Rates & proportional relationships
- Graphing proportional relationships: unit rate
- Graphing proportional relationships from a table
- Graphing proportional relationships from an equation
- Graphing proportional relationships

© 2024 Khan AcademyTerms of usePrivacy PolicyCookie Notice

# Graphing proportional relationships from an equation

Let's graph the equation y = 2.5x. For every increase of 1 in x, y increases by 2.5. We call this the "unit rate" or "slope". The graph shows a proportional relationship because y changes at a constant rate as x changes and because y is 0 when x is 0. Created by Sal Khan.

## Want to join the conversation?

- i still don't understand how to do these :((42 votes)
- I look in the question bar for help and everyone's as lost as I am.(12 votes)
- Plus all these comments are ancient, no one from my class is active on here apparently. They probably need to get upvoted to be seen so I don't think anyone's reading my comments either.(22 votes)

- dude i dont u n d e r s t a n d, please help(17 votes)
- I don't get any of this. PLZ help!(13 votes)
- im glad he smart cause i aint(13 votes)
- Math makes me cry(11 votes)
- take a break, drink some water, and try again after a few minutes (or maybe even the next day!) Never give up!(2 votes)

- At2:50, how can Y change 12.5?(6 votes)
- At2:50Y doesn't change 12.5 it changes by 5 for every time the x changes by 1(3 votes)

- is math related to science(1 vote)
- Yes, you will encounter a lot of mathematical equations and calculations in chemistry and physics.

Have a blessed, wonderful day!(12 votes)

- How are we going to use this in life?(4 votes)
- Careers in business and engineering often require these skills.(6 votes)

- If you read this your a dad(6 votes)

## Video transcript

We're asked to graph y
is equal to 2.5 times x. So we really just have to
think about two points that satisfy this equation here,
and the most obvious one is what happens when x equals 0. When x equals 0, 2.5
times 0 is going to be 0. So when x is 0, y is
going to be equal to 0. And then let's just
pick another x that will give us a y that
is a whole number. So if x increases by 1, y
is going to increase by 2.5. It's going to go
right over there, and I could graph
it just like that. And we see just by
what I just said that the unit rate of change
of y with respect to x is 2.5. A unit increase in x, an
increase of 1 and x, results in a 2.5 increase in y. You see that right over
here. x goes from 0 to 1, and y goes from 0 to 2.5. But let's increase
x by another 1, and then y is going to increase
by 2.5 again to get to 5. Or you could say, hey, look,
if x is equal to 2, 2.5 times 2 is equal to 5. So this is a legitimate
graph for this equation, but then they also
tell us to select the statements that are true. So the first one is
the equation does not represent a proportional
relationship. Well, this is a
proportional relationship. A proportional
relationship is one where, first of all, if
you have zero x's, you're going to have zero y's, where y
is equal to some constant times x. And here, y is equal
to 2.5 times x. So this is definitely a
proportional relationship, so I'm not going to check that. The unit rate of the
relationship is 2/5. So I'm assuming--
this is a little ambiguous the way
they stated it. I'm assuming they're saying
the unit rate of change of y with respect to x. And the unit rate of change
of y with respect to x is, when x increases
1, y changed 2.5. So here they're saying when x
changes by 1, y changes by 0.4, 2/5 is the same thing as 0.4. This should be 5/2. 5/2 would be 2.4. So this isn't right as well. The slope of the line is 2.5. Well, this looks right. Slope is change in
y over change in x. When x changes 1, y changes 2.5. So change in y, 2.5,
over change in x, 1. 2.5 over 1 is 2.5. And you could also
see it looking at the form of
this equation. y is equal to-- this is
the slope times x. So that's right. A change of 5 units in x results
in a change of 2 units in y. Well, let's test that idea. We know when x is 0, y is 0. So if x goes from 0 to 5,
what's going to happen to y? Well, y is going
to be 2.5 times 5. 2.5 times 5 is 12.5. So y would not just change 2. It actually would change 12.5. So this isn't right. A change of 2 units in x results
in a change of 5 units in y. Well, we see that. A change in 2 units of x results
in a change of 5 units in y. That's exactly what we
graphed right over here. These two points show that. So this is definitely true.