If you're seeing this message, it means we're having trouble loading external resources on our website.

If you're behind a web filter, please make sure that the domains *.kastatic.org and *.kasandbox.org are unblocked.

Main content

Factors and multiples: days of the week

Sal uses factors and multiples to figure out days of the week. Created by Sal Khan.

Want to join the conversation?

  • aqualine seed style avatar for user crazy pugz
    I did it in a simpler way: so I knew that they wee 7 days in a week and needed to figure out the 300th day. I just divided 300 by 7 and got a decimal number. It as around 42 so I multiply 7 by 42 and got 294 and I just needed 6 more to have 300. and so I was left with 6 and well there were 7 days and the 6th day was sat and that was my answer. (this method works every time hope this helps with u guys!
    (35 votes)
    Default Khan Academy avatar avatar for user
  • starky ultimate style avatar for user gavin
    i need 25 votes to beat my sister in a bet for 10 bucks plz help!
    (14 votes)
    Default Khan Academy avatar avatar for user
  • duskpin ultimate style avatar for user A.H.H.
    If every month has a different amount of days (e.g. October has 31 days, November has 30), does this formula still work?
    (6 votes)
    Default Khan Academy avatar avatar for user
  • piceratops ultimate style avatar for user kaden.owenby
    This thing is hard to understand if you know what I mean.
    (9 votes)
    Default Khan Academy avatar avatar for user
  • blobby green style avatar for user patty hewes
    ive checked to find the day in coming october but it shows wrong anwers coz first day i.e day 1 is tuesday . so , if i apply the same rule , like to find day of 25
    25/7= 3 r 4 thursday but in calender it shows 25 october is friday .
    (5 votes)
    Default Khan Academy avatar avatar for user
  • starky ultimate style avatar for user ethanchengnaldo
    Day 1 is Monday. how about day 490? Find out the day of day 490.

    So it goes like this:
    490 divide 7, if there is no remainder, it is Monday, ​if there are 1 remaining number, it is Tuesday, ​if there are 2 remaining numbers, it is Wednesday.......
    ​If there are 6 remaining numbers, it is Sunday.
    Remember, there are no seven remaining numbers! (6 is the maximum)
    Hot questions:

    1. If there is 17 remainder, what day is it?

    2. a) How many remainders are there if there are 900 days?
    b) What is that day at day 900?

    If you think this is helpful to you, pls vote for my questions, help me to get to more than 50 votes. I believe that if everybody can vote for my questions, it will be just an easy one to achieve!
    (6 votes)
    Default Khan Academy avatar avatar for user
  • blobby green style avatar for user parthucmas
    If there is like a number 140 and there is no remainder so can we find that
    (2 votes)
    Default Khan Academy avatar avatar for user
    • old spice man blue style avatar for user Sharan Aithal
      Forget 140 for a moment. Let's take 14 alright.

      7 divides evenly into 14, leaving 0 as remainder.

      If we refer Sal's table in the video, we see that 14 is Sunday.

      And Sunday is 1 day before the day we started on which was Monday.

      So what did that tell us?

      It tells us that if the remainder is 0, then the answer (in our case = Sunday) is going to be the previous day from the day we started on (in our case = Monday)

      Try figuring out what 140's gonna be now. ;)
      All the best, hope that helped!
      (2 votes)
  • aqualine seed style avatar for user Saqib Khan Afridi
    how can we calculate day with the help of year month and day
    (7 votes)
    Default Khan Academy avatar avatar for user
  • male robot hal style avatar for user Aryaman Singh
    your screen is little bit blur I cannot see it properly.
    (3 votes)
    Default Khan Academy avatar avatar for user
  • starky ultimate style avatar for user Estewonka/Esteban
    how do u know this pleas teach me
    (4 votes)
    Default Khan Academy avatar avatar for user

Video transcript

Let's say that today-- and we'll call today Day 1-- Day 1 is a Monday. What I want to figure out is what is the Day 300 going to be? What day of the week will Day 300 be? And I encourage you to pause the video and think about that a little bit. So let's just write out the days of the week. You have Monday-- I'll do this in a different color-- you have Monday, Tuesday, Wednesday, Thursday, Friday, Saturday and Sunday. So if we had a lower number here, we could just fill this out. Monday is Day 1. Tuesday's Day 2. Wednesday, Day 3. 4, 5, 6, 7. I'll keep going. Day 8, well, that's going to be a Monday again. 9 10. I'm almost writing a calendar out. 11, 12, 13, 14, 15, 16. So this is kind of useful. I could just write it out if I wanted to figure out something Day 16 or Day 20. I could just write that out. But this isn't that helpful if I want to figure out Day 300 or especially wouldn't be helpful if I wanted to figure out Day 3,000. So can I come up with some mathematical way of thinking about what Day 300 is going to be? Well, as you see when I started drawing this grid here, this grid has rows. And each row, you have seven days in it. And that makes sense. There are seven days of the week. So is there a way that if someone just gave you 16 without drawing this grid, then you would know that 16 is a Tuesday? Well, one way to think about it that might jump out at you is you could divide 16 by 7. That will tell you how many of these rows will come before 16. So 16 divided by 7 is 2. You have 2 rows before 16 right over here. You could get 7 into 16 2 times. And then you have a remainder. What is the remainder when you divide 16 by 7? 16 divided by 7 is going to be 2. 2 times 7 is 14. You're going to have a remainder of 2. So when we divide, we've historically cared more about this 2. We normally care more about well, how many times does it go into it. But now, the remainder is actually interesting. The remainder is really interesting here. Because the remainder tells you-- the first two just tells you 7 goes into 16 2 times. That's how many rows you have before getting to the 16. But then the remainder tells you in that row where is the 16? So the 16 is remainder 2. So the 16 is not the first. It's the second entry in the third row. And so it's going to be a Tuesday. Tuesday is the second day. I know what you're saying. Does that always work? Well, let's try it out with some other examples. Let's imagine Day 25. So let's just divide 25 by 7. So I'll do it right over-- I could do it. I'm going to make sure I have enough space. So if I have 7 goes into 25, it goes 3 times. 3 times 7 is 21. You have a remainder of 4. So let's see. So based on that-- so let me rewrite this-- so 25 divided by 7 is equal to 3, remainder 4. So based on this, if we were to write out the grid, we should have three rows of 7 before we get to the 25. And then 25 should sit in the fourth column. So if it's sitting in the fourth column, it should be a Thursday. So Day 25, based on this little math we just did, should be a Thursday. Let's see if that actually works out. So let's go to 17, 18, 19, 20, 21, 22, 23, 24 and 25. It is indeed a Thursday. But it makes complete sense. You could get seven rows in it before the row that gets to 25. And then in that row, it's going to be the fourth entry, because you have a remainder of 4. 1, 2, 3, 4. It's going to be a Thursday. So now we're ready to answer the question. What is Day 300 going to be? So let's just divide 300 by 7 and see where we get. 7 goes into 30 4 times. 4 times 7 is 28. Subtract, you get 2. Bring down a 0. 7 goes into 20 2 times. 2 times 7 is 14. And then we get our remainder. And now we care much more about the remainder. 20 minus 14 is 6. So our remainder is 6. So if we think about what day of the week it is, in its row it's going to be the sixth entry. It's going to be the sixth column. There's going to be 42 rows above it. But we care about which entry it is in its row. So Day 300 is going to be the sixth day of the week, the way we've written it out. It is going to be a Saturday.