Main content

### Course: Algebra (all content) > Unit 7

Lesson 9: Maximum and minimum points# Worked example: absolute and relative extrema

Extrema is the general name for maximum and minimum points. This video shows how to identify relative and absolute extrema in the graph of a function.

## Want to join the conversation?

- At 1.37 Sal said that the specified point is not a relative maximum. According to the definition for a relative maximum:

f(a) is rel. maxima when all the x near it are f(a) <= f(x)

In the example, the specified point lies at a position, where the points left of it are all equal to it and the points right of it are less than it. Therefore, doesn't that make the specified point a rel. maxima?(56 votes)- I had just watched the previous video and I thought the same. If it was for me to do, I would call this a relative maximum point(19 votes)

- Wait a minute, but what if the map shows a function that has two points that are the same height, but says plot the absolute maximum?(11 votes)
- That scenario shouldn't happen. There will be one absolute max or min if they ask you to mark it (it can happen in a function, you just won't get it as a question since in that case there isn't an absolute max/min).(4 votes)

- What is the difference between absolute maximum and global maximum?(4 votes)
- At02:52, Sal says that the point (3,-8) would be a relative maximum point but how is that possible? The function is only till -8. How can we assume that the function will have the greatest value considering the points around it? I hope I made my question clear.(6 votes)
- Sal told us at the beginning of the video that the domain was closed, that is, it
*included*the end points. The domain is [-8,6]. On this particular graph, if we start at x=-8, and move towards the right on the x axis, the next immediate f(x) is less than it was at x=-8. Because we are on a closed interval, that makes the point (-8, 3) a relative maximum. (Make sure you put your x coordinate first when referring to a point on a graph😊.)(4 votes)

- So what is the difference between absolute max/min point and global max/min point?(6 votes)
- They're the same. Maybe you mean relative max/min point and global/absolute max/min point.

A relative max/min point is a point higher or lower than the points on both of its sides while a global max/min point is a point that is highest or lowest point in the graph. In other words, there can be multiple relative max/min points while there can only be one global/absolute max/min point.(0 votes)

- Is it possible for a function to have multiple global minima? For example, a sin or cos wave has similar value in their minimum/maximum. How those minima and maxima should be called? Do sin wave and cos wave have global minima or do they have only local minima?(5 votes)
- By definition of absolute/global minimum and maximum you cannot have multiple of these points. You can have multiple points that are the absolute/global min or max though there would still be only 1 absolute/global min or max.

For example, on the last graph that Sal uses the absolute/global max point is 7. We can have another point on the graph that is 7, but that doesn't mean we have multiple absolute/global max it just means that there are 2 points with the absolute/global max. If another point was created on that was y=8 then 7 would no longer be the absolute/global max because 8 would be the absolute/global max.

There might be some terminology for this, but I don't know what it is.(1 vote)

- Just making sure, there can be more than one relative minimum or maximum point?(3 votes)
- Yes, there can exist more than one relative minimums and relative maximums.(2 votes)

- Hey how to get the minimum and maximum of a function without drawing it?(3 votes)
- You have to use derivatives to find the min and the max algebraically(that is, without graphing)

https://www.khanacademy.org/math/ap-calculus-bc/bc-derivatives-analyze-functions#bc-find-rel-extrema

https://www.khanacademy.org/math/ap-calculus-bc/bc-derivatives-analyze-functions#bc-find-abs-extrema

Or you can try numbers out, or make a table. But that's not very precise compared to the derivative one.(2 votes)

- At2:36, Sal marked two points as relative minimum points that looked like absolute minimum points. Was there a reason for doing this?(3 votes)
- I do not understand the scenario he gave at3:18, is this related to the example? how?(2 votes)
- That part was a bit confusing for me too. He's just writing the definition of absolute maximum and minimum points in more formulaic terms. An easy way to say it in English is "the highest part of the line is the absolute maximum." The math-language version makes it clear that you'll have an absolute maximum point at (c, y) if the function's output for the input of c is greater than the outputs you get for any other input within the function.

The f(c) part means "what the function spits out when you put c into it", and it also means a value of y for a coordinate on the graph.

For example, if you had a graph that was a diagonal line going from the origin up to the point (4,8) then the formula would look like this:

Abs. value at x = 4 iff f(4) > f(x)

I hope that helps!(3 votes)

## Video transcript

- [Instructor] We're asked to mark all the relative extremum
points in the graph below. So pause the video and see
if you can have a go at that, just try to maybe look at the screen and, in your head see if you can
identify the relative extrema. So now let's do this together. So there's two types of relative extrema. You have your relative maximum points, and you have your relative minimum points. And a relative maximum
point or relative minimum, they're relatively easy
(laughing) to spot out visually. You will see a relative maximum point as the high point on a hill, and the hill itself
doesn't even have to be the highest hill. For example the curve
could go at other parts of the domain of the function, could go to higher values. It could also look like
the peak of a mountain, and once again since we're talking about the relative maximum, this mountain peak doesn't
have to be the highest mountain peak. There could be higher mountains, and actually each of these peaks, each of these peaks would
be a relative maximum point. Now relative minima are the opposite. They would be the bottom of your valleys. So that's a relative minimum point. This right over here is
a relative minimum point, even if there are other
parts of the function that are lower. Now there's also an edge
case for both relative maxima and relative minima, and that's where the graph is flat. So if you have parts
of your function where it's just constant, these points would actually be both. For example, if this is our x-axis right over here, that's our x-axis, if this is our y-axis right over there, and if this is x equals c, if you construct an
open interval around c, you notice that the value
of our function at c, f of c, is at least as large as the values of the function around it. And it is also at least as small as the values of the function around it, so this point would also be considered a relative minimum point. But that's an edge case that
you won't encounter as often. So with that primer out of the way, let's identify the relative extrema. So first the relative maximum points. Well that's a top of a
hill right over there, this is the top of a hill. You might be tempted to look
at that point and that point, but notice, at this point right over here, if you go to the right, you have values that are higher than it. So it's really not at the top of a hill. And right over if you go to the left, you have values that are higher than it, so it's also not the top of a hill. And what about the
relative minimum points? Well this one right over here
is a relative minimum point. This one right over here is
a relative minimum point. And this one over here is a relative minimum point. Now let's do an example
dealing with absolute extrema. So here we're told to
mark the absolute maximum and the absolute minimum points in the graph below. So once again, pause this video and see if
you can have a go at this. So you have an absolute maximum point at let's say x equals c if and only if, so I'll write iff for if and only if, f of c is greater than or equal to f of x for all the x's in
the domain of the function. And you have an absolute minimum at x equals c if and only if, iff, f of c is less than or equal to f of x for all the x's over the domain. So another way to think about it is, absolute maximum point is the high point. So over here, that is the
absolute maximum point. And then the absolute
minimum point is interesting because in this case, it would be actually one of, it would happen at one of
the endpoints of our domain. So that is our absolute max, and this right over here is our absolute, absolute min. Now once again there is an edge case that you will not see too frequently. So for example, if this function did something like this, so if it went up like this, and then it just stayed flat like this, then this would no longer be an absolute maximum point. But any of these points
in this flat region, because they are at least
as high as any other points on our entire curve, any of those could be considered
absolute maximum points. But we aren't dealing with
that edge case in this example, and you're less likely to see that. And so in most problems, it's pretty easy to pick out. Because the absolute
highest point on the curve will often be your absolute maximum, and the absolute lowest
point on your curve will be your absolute minimum.