Main content
Algebra 1
Course: Algebra 1 > Unit 13
Lesson 4: Introduction to factoringIntro to factors & divisibility
Learn what it means for polynomials to be factors of other polynomials or to be divisible by them.
What we need to know for this lesson
A monomial is an expression that is the product of constants and nonnegative integer powers of , like . A polynomial is an expression that consists of a sum of monomials, like .
What we will learn in this lesson
In this lesson, we will explore the relationship between factors and divisibility in polynomials and also learn how to determine if one polynomial is a factor of another.
Factors and divisibility in integers
In general, two integers that multiply to obtain a number are considered factors of that number.
For example, since , we know that and are factors of .
One number is divisible by another number if the result of the division is an integer.
For example, since and , then is divisible by and . However, since , then is not divisible by .
Notice the mutual relationship between factors and divisibility:
Since (which means is a factor of ), we know that (which means is divisible by ).
In the other direction, since (which means is divisible by ), we know that (which means is a factor of ).
This is true in general: If is a factor of , then is divisible by , and vice versa.
Factors and divisibility in polynomials
This knowledge can be applied to polynomials as well.
When two or more polynomials are multiplied, we call each of these polynomials factors of the product.
For example, we know that .
This means that and are factors of .
Also, one polynomial is divisible by another polynomial if the quotient is also a polynomial.
For example, since and since , then is divisible by and . However, since , we know that is not divisible by .
With polynomials, we can note the same relationship between factors and divisibility as with integers.
In general, if for polynomials , , and , then we know the following:
and are factors of . is divisible by and .
Check your understanding
Determining factors and divisibility
Example 1: Is divisible by ?
To answer this question, we can find and simplify . If the result is a monomial, then is divisible by . If the result is not a monomial, then is not divisible by .
Since the result is a monomial, we know that is divisible by . (This also implies that is a factor of .)
Example 2: Is a factor of ?
If is a factor of , then is divisible by . So let's find and simplify .
Notice that the term is not a monomial since it is a quotient, not a product. Therefore we can conclude that is not a factor of .
A summary
In general, to determine whether one polynomial is divisible by another polynomial , or equivalently whether is a factor of , we can find and examine .
If the simplified form is a polynomial, then is divisible by and is a factor of .
Check your understanding
Challenge problems
Why are we interested in factoring polynomials?
Just as factoring integers turned out to be very useful for a variety of applications, so is polynomial factorization!
Specifically, polynomial factorization is very useful in solving quadratic equations and simplifying rational expressions.
If you'd like to see this, check out the following articles:
What's next?
The next step in the factoring process involves learning how to factor monomials. You can learn about this in our next article.
Want to join the conversation?
- what is a factor(11 votes)
- A number that multiplies to another number.(36 votes)
- The lesson was a little hard man...(21 votes)
- I'm glad I'm not the only one :/ but if we practice a lot we'll get it eventually!(12 votes)
- Hey all. Confused on last question. Wouldn’t x2+5x be a factor since you just cancel the x2+5x on top and bottom? Or is it not just because of the problem being about Area?(7 votes)
- I realize this was posted 8 months ago, but this is a common mistake so I would like to address it. x^2+5x is not a factor of this expression because it is being added to 4. If that sum were multiplied by 4 instead of added to it, then it would be a factor. The fact that the expression is a sum of x^2+5 and 4 and not a product of the two means that x^2+5 cannot be a factor of x^2+5x+4. I hope that makes sense and clears this up for anyone else wondering the same thing.(31 votes)
- This lesson was easy for me how about y`all?(7 votes)
- What is monomials?(4 votes)
- A monomial is a math statement with exactly one term. A term can be anything with multiplication or division and it can even contain variables, but it cannot contain addition or subtraction. Here are some examples of what is and isn't a monomial.
IS a monomial
- 9x
- 14a/2
- 4
- 17ab^2
IS NOT a monomial
- 14x + 4
- 919 - 7
- x^2 + 4x + 9
An easy way to remember what a monomial is can be to break it down into its Latin/Greek roots.
Mono - nomial
mono means one
nomial means number or term
Hope this helps!(9 votes)
- What's the easiest way to tell a number is a factor of another?(5 votes)
- Think about what 2 numbers multiply together to make that number. For example 3 x 4 = 12 therefore 3 and 4 are factors.(5 votes)
- i really don't understand this topic how do you do this(6 votes)
- How does this work?
I mean I get it but it's really hard.
(btw im doing 8th grade math and im in 7th grade.)(4 votes)- (Assuming the denominator is a monomial)
First when you are dividing a polynomial, it's better to take each element separated by + or - in the numerator.
For example,
(2x^2 + 6x)/2x
-> 2x^2/2x + 6x/2x
This is basically separating a fraction into smaller fractions.
Then the next thing you will do is think as each variable / constant that is being multiplied not placed together.
Consider 2x^2/2x
So you can first take 2/2 and compute it, which results to 1.
Then you consider x^2/x, which is x^(2-1) = x.
Consider 15x^2y^6 / 10x^4y^3.
First take 15 / 10, which is 3 / 2. Then consider x^2 / x^4, which is 1 / x^2. Last y^6 / y^3 which is y^3.
The reason why this works is because of the fundamental of algebra.
Hope this helps(3 votes)
- the last one got me confused(5 votes)
- Does the factor of a polynomial always have to be a monomial?
e.g. 3(3x^2 + 3x + 3)
factors would be 3 and (3x^2 + 3x + 3)?(3 votes)- A polynomial can have a monorail factor if it's terms have a common factor.But it can also have binomial and trionomial factors that can't be factored further.For example: x^3-1=(x-1)(x^2+x+1)
3(3x^2+3x+3)=9(x^2+x+1) So, the factors are 9 and (x^2+x+1).(2 votes)