If you're seeing this message, it means we're having trouble loading external resources on our website.

If you're behind a web filter, please make sure that the domains *.kastatic.org and *.kasandbox.org are unblocked.

## Algebra 1

### Unit 2: Lesson 3

Analyzing the number of solutions to linear equations

# Creating an equation with no solutions

Sal shows how to complete the equation -11x + 4 = __x + __ so that it has no solutions. Created by Sal Khan.

## Video transcript

We're asked to use the drop-downs to form a linear equation with no solutions. So a linear equation with no solutions is going to be one where I don't care how you manipulate it, the thing on the left can never be equal to the thing on the right. And so let's see what options they give us. One, they want us to-- we can pick the coefficient on the x term and then we can pick the constant. So if we made this negative 11x, so now we have a negative 11x on both sides. Here on the left hand side, we have negative 11x plus 4. If we do something other than 4 here, so if we did say negative 11x minus 11, then here we're not going to have any solutions. And you say, hey, Sal how did you come up with that? Well think about it right over here. We have a negative 11x here, we have a negative 11x there. If you wanted to solve it algebraically you could add 11x to both sides and both of these terms will cancel out with each other and all you would be left with is a 4 is equal to a negative 11, which is not possible for any x that you pick. Another way that you think about it is here we have negative 11 times some number and we're adding 4 to it, and here we're taking negative 11 times that same number and we're subtracting 11 from it. So if you take a negative 11 times some number and on one side you add four, and on the other side you subtract 11, there's no way, it doesn't matter what x you pick. There's no x for which that is going to be true. But let's check our answer right over here.