Main content

## Algebra 2

### Course: Algebra 2 > Unit 3

Lesson 1: Factoring monomials- Introduction to factoring higher degree polynomials
- Introduction to factoring higher degree monomials
- Which monomial factorization is correct?
- Worked example: finding the missing monomial factor
- Worked example: finding missing monomial side in area model
- Factoring monomials
- Factor monomials

© 2023 Khan AcademyTerms of usePrivacy PolicyCookie Notice

# Worked example: finding missing monomial side in area model

Sal finds the length of a rectangle whose area is 42xy^3 and whose height is 14xy.

## Want to join the conversation?

- Who came up with this theory?(7 votes)
- No one knows but the theory is called Discriminant(7 votes)

- How did we get the 3y^2 at the end? I got 3xy^2 as my answer. Did Mr.Sal get the 3y^2 because when he divided 42x and 14x, did the x's cancel out?(3 votes)
- yep, variables can cencel out when dividing. x/x = 1, (x^2)/x = x and x/(x^2) = 1/x. then you can just plug in other exponents to make it work.

It might even be easier to think of it with numbers. (2^5) / (2^3) = 2^2(2 votes)

- When we divide x by x, don't we get x to the zero power?(3 votes)
- Not exactly. x/x = 1 because that is just a fraction rule. 8/8 = 1, 8532/8532 = 1 and so on(1 vote)

- What if you distributed L?

Why do we not? Is it because it's a monomial?(2 votes)- Correct. There isn't anywhere to distribute it to because L and 14xy are both monomials:

L(14xy) distributed would just be L14xy . Which doesn't actually change anything - it just makes the equation look a little more sloppy.(2 votes)

- How do you find the area of a missing side of a shape? and how do you find the missing side of a triangle when given the area?(1 vote)
- We divide the are from the given length (regarding the formula of area for a particular shape)(1 vote)

- what if my area is 12y^2+21y^5 and im trying to find the width and length using factroring?(1 vote)
- You can extract 3y^2 from both sides.

12y^2+21y^5

= 3y^2(7y^3 + 4)

From there you factor it out and find out your y values.

I hope this helped!(1 vote)

## Video transcript

- [Voiceover] So we have a
rectangle right over here. Let's say that we know that its area is 42x times y to the third. So that is the area of the rectangle. And we also know that the
height right over here is 14xy and what we
want to do in this video is figure out what the
length is going to be. And as you can imagine, it's going to be in algebraic terms. So I encourage you to pause the video and figure out what is
the length going to be if this height is 14xy and the area is 42xy to the third. Well, how do you figure out area? You take your length, and
I'll just use L for length. I'll put L in parentheses. So you take your length
and you multiply it times your height. So let's multiply it times 14xy and that's going to give you your area. So that's going to give us our area of 42xy to the third power. So how do we solve for our length? Well, we can just divide
both sides by 14xy. So let's do that. So, let's divide the left-hand side and the right-hand side by 14xy, 14xy. Now on the left-hand
side, I'm multiplying by 14xy and dividing by 14xy, that's the same thing as just
multiplying or dividing by one so that cancels out. So I'm just left with L or our length which is the whole point of
dividing both sides by 14xy. And on the right-hand side, I can look at the coefficients first. I could say 42 divided by 14, and that's going to be three. Three, and then I could say well, x divided by x that's
just going to be one, and then I have y to
the third divided by y. y to the third divided
by y, that is going to be y to the third divided by
y is going to be y-squared. And then we're done. Our length is three y-squared. So our length is equal to three y-squared.