If you're seeing this message, it means we're having trouble loading external resources on our website.

If you're behind a web filter, please make sure that the domains *.kastatic.org and *.kasandbox.org are unblocked.

Main content

### Course: Arithmetic (all content)>Unit 5

Lesson 21: Multiplying fractions

# Finding area with fractional sides 2

Learn how to calculate the area of rectangles with fractional side lengths. Watch examples of this concept in action, and then see practice problems applying what was shown to solve similar problems.

## Want to join the conversation?

• What about if the problem had a mixed number in it and no other fraction? How would you solve it, then?
(29 votes)
• its simple, all you have to do is multiply it normally
(7 votes)
• I'm sorry that this is not a question, but the replay button does not work, and the video keeps on turning black when I attempted to watch the video.
(8 votes)
• What does it mean to square a meter.....?
that confuses me.
(5 votes)
• When you "square" something by adding a ² at the end, it means you have multiplied the variable attached by itself.
So, say 2 is J. Then J² would be 2 x 2, or 4.
Hope this helps,
BIOHAZARD, The One and Only Radioactive Coder
(6 votes)
• how does the area be similar to the fractions?
(6 votes)
• I don't understand why the denominator changes when you multiply two fractions and when you add two fractions, the denominator stays the same. For example, 4/5*410=16/50, but when you add 4/5+4/10, it equals 8/5 or 1, 3/5 . How is it different and can you also change the denominator in division and not subtraction?
(3 votes)
• How do I study more effectively?
(2 votes)
• Douse anyone have a fun way to explain this I need to hear it in a way that is fun so I can keep concentrating on it?
(2 votes)
• 1m 1m 1m for every side sounds weird?
(2 votes)
• So it's basically like all the sides are 1m 1m 1m 1m?
(2 votes)
• Is in there all ready and shade area?
(1 vote)

## Video transcript

- [Voiceover] So I have a square here and let's say that its height is one meter. So this is height right over here. That is one meter. And let's say its width is also one meter. So I'm talking about the dimensions of the entire square, not just the shaded region. So this is also, that right over there is also one meter. What's the area of the entire square going to be, not just the shaded, the entire square? Well, the total area, total area is going to be equal to the height times the width. So one meter times one meter. One times one is of course one and meters times meters we could write that as a square meter or meter squared, however you want to think about it. Now with that out of the way now let's focus on the shaded area. Let's think about what that is. So the shaded, shaded, shaded area is equal to what, and I encourage you to pause the video and try to figure that out. Well the one thing that might jump out of you is that our entire area, our entire square is divided into these equally equal, equal rectangles. So one way to think about it is well, what is the area of each of these equal rectangles? For example what is the area of that rectangle right over there? And to figure it out we can say well, what fraction is that of the whole? And to figure that out we have to figure out how many of these rectangles has our whole been divided into? We could try to count them out or we could say let's see, I have one, two, three, four, five, six, seven, eight, nine, 10 columns, and each columns has one, two, three, four, five, six, seven. So we have 10 columns of seven or we have 70 of these rectangles, that our entire whole is divided into 70 equal sections that we see these rectangles right over here. This character, this character right over there that is 1/70 of the entire area. So 1/70 of one square meter which is of course just going to be 1/70 of a square meter. That's just one of these. That's just one of these rectangles. Now if we cared about the shaded area we can just count how many of these rectangles there are and we see that there are one, two, three, four, five, six, seven, eight, nine columns of one, two, three. So there's 27 of these rectangles, of these equal rectangles in the shaded area. The shaded area is going to be, we have 27 of these rectangles and each of them, and then each of them have an area of 1/70 of a square meter. 1/70 of a square meter and what does that give us? Well that gives us the area of the shaded or the shaded area is going to be 27/70. 27 times 1/70 is going to be 27/70. 27/70 square meters and we're done. But what I want to appreciate now is that there's multiple ways that we could have tackled this. Another way we could have tackled it is to figure out what the dimensions, what the dimensions are of the shaded area. So for example. For example, what is the height of just the shaded area? So just that height right over there and I encourage you to pause the video and try to think about what it is and it's going to be a fraction. Well, we see if we're going in the vertical direction we've divided this one meter. We've divided it into one, two, three, four, five. So let me do it a little bit differently. We've divided it into one, two, three, four, five, six, seven equal sections. That might have been a little bit confusing the way I just drew it. So you can see it when you look at the actual... Actually let me do it in a more vibrant color. We have... I'm having trouble picking colors. All right, here we go. We have one, that's that right over there. Two, three, four, five, six, seven equal sections that we've divided this one meter in. And the height of the shaded area is three of them. So this height right over here, this height right over here is 3/7 of the whole and the whole is a meter. So it's 3/7 of a meter. Now by that same logic what is the width going to be? What is the width going to be? Well we can see that the entire meter has been divided into one, two, three, four, five, six, seven, eight, nine, 10 equal sections so going from here to here is going to be a tenth. So this distance right over here is going to be a tenth. Let me do that in a color that's different. So this distance right over here is going to be a tenth and so how many tenths represent the width of the green area? Let's see, we get, have 1/10, 2/10, 3/10, 4/10, 5/10, 6/10, 7/10, 8/10, 9/10. So this width is 9/10 of this whole length which is a meter so it's 9/10 of a meter. Now to find the area we can multiply the width times the height or the height times the width. So we could say, so I'll write this again. The shaded area. Shaded area instead of doing it this way we could say I have a height of 3/7 of a meter. So 3/7 meters and then I can multiply that, times our width for just the shaded area which is 9/10 of a meter. 9/10 of a meter. And now what is this going to get us? Well, this is going to be equal to the meters times the meters is going to get square meters which is what we want and then we could multiple the numerators and multiply the denominators. Three times nine is going to give us 27 and seven times 10 is going to give us 70. Exactly what we had before. 27/70 square. Let me write that a little bit neater. 27. 27/70 of a square meter. And you could think about why did this work out regardless of how we did it? Notice, three and nine are the numerators. That was how many rows and columns we had of these little rectangles. And then the seven and 10 that's to figure out how many rectangles we actually had. So this is saying okay, the three times nine is how many rectangles we have? And then the seven times 10 is what fraction of the whole each of those rectangles represent and that's essentially what we did up here. So either way, you're going to get the right answer but I really want you to think about why this was.