Main content
Arithmetic
Course: Arithmetic > Unit 18
Lesson 5: Intro to adding negative numbersZero pairs worked example
When we have a positive unit and a negative unit, they add up to zero. We call that a zero pair. Let's use integer chips to represent the number -2, but not just with 2 negative chips. This will open the door for us to add and subtract with negative numbers. Created by Sal Khan.
Want to join the conversation?
- What I do?
confusin.(7 votes) - why would they add new content? i literrally have to redo everything.(7 votes)
- umm you don't...(1 vote)
- I am in tenth grade.(5 votes)
- then what are you doing here?(3 votes)
- Wow, first question!(3 votes)
- Excuse me bro do you guys watch 1 hour of videos bro only in ohikhan(3 votes)
- What is khan academy(1 vote)
- where we learn when teachers don't want to teach...(4 votes)
- what is zero pair.(1 vote)
- @Bryson Bryson Bryson
Good Question! When we have a positive unit and a negative unit, they add up to zero. We call that a zero pair. Let's use integer chips to represent the number -2, but not just with 2 negative chips. This will open the door for us to add and subtract with negative numbers.
Remember that each member of a pair of numbers such as –3 and 3 is called the opposite of the other number. The pairs are also called “zero pairs” because their sum is zero.
Also, Sal explains this thoroughly in his video and article before this about Zero pairs if you want to go back and look.
Hope this helps.(1 vote)
- Does the + on top of - count as zero pairs?(1 vote)
- Wow. (fourth question.)
:)
Also, Is this newly added?(2 votes)- yes
this was newly added(0 votes)
- if (x < 0) {
return;
}(1 vote)
Video transcript
- [Instructor] We're
told, "This is the key for the integer chips." So this yellow circle with
a plus is equal to one. This, I guess, pinkish
circle, peach circle, with a minus, that is
equal to negative one. "Consider the following image." And so, there we have a bunch of the positive yellow circles, and then we have even more of the pink, or peach-looking negative circles. "Complete the description of the image. There are blank zero pairs
and blank units left over." If you're actually doing this exercise, this is a screenshot from the exercise, you would fill in something here, and there's a dropdown over here. So the first question you might ask is, "What is a zero pair?" So a zero pair is when you
take two opposite numbers, and they essentially, when you add them, they cancel out to get to zero. An example of that would
be one plus negative one. These two numbers are opposites,
so they are a zero pair, because when you add them
together, you get zero. Why does that make sense? Well, imagine if positive
values were walking forward, and negative values
were walking backwards. So you could view this as one step forward plus one step backward. That's just going to get you
back to where you were before. You could have other zero pairs. You could have things like
positive two plus negative two. That's also a zero pair. You walk two steps forward
and then two steps backward. That's just going to get you
back to where you were before. You will not have moved after all, or you'd be back to where you were before. So let's think about how many zero pairs there are over here. Well, we know that each of
the ones forms a zero pair with each of the negative ones. So that's one zero pair, two, three, four, five zero pairs. So I'll just write a five right over here. You would type that in
if you were doing this. And then how many units are left over? Well, you could see right over here, we see that we have two of the
negative one units left over.