If you're seeing this message, it means we're having trouble loading external resources on our website.

If you're behind a web filter, please make sure that the domains *.kastatic.org and *.kasandbox.org are unblocked.

Main content

Dividing a decimal by a whole number with fraction models

.

Want to join the conversation?

  • piceratops tree style avatar for user AydenM
    can i get the most votes pls
    (14 votes)
    Default Khan Academy avatar avatar for user
  • duskpin seedling style avatar for user Mya
    Does anyone else find this a little confusing? Because how do you know that the "8" is supposed to be in the hundreths??
    (3 votes)
    Default Khan Academy avatar avatar for user
  • blobby green style avatar for user MelanyD
    jhjrrij
    (1 vote)
    Default Khan Academy avatar avatar for user
  • piceratops tree style avatar for user AydenM
    Write 14,897 in expanded form. Let me just rewrite the number, and I'll color code it, and that way, we can keep track of our digits. So we have 14,000. I don't have to write it-- well, let me write it that big. 14,000, 800, and 97-- I already used the blue; maybe I should use yellow-- in expanded form. So let's think about what place each of these digits are in. This right here, the 7, is in the ones place. The 9 is in the tens place. This literally represents 9 tens, and we're going to see this in a second. This literally represents 7 ones. The 8 is in the hundreds place. The 4 is in the thousands place. It literally represents 4,000. And then the 1 is in the ten-thousands place. And you see, every time you move to the left, you move one place to the left, you're multiplying by 10. Ones place, tens place, hundreds place, thousands place, ten-thousands place. Now let's think about what that really means. If this 1 is in the ten-thousands place, that means that it literally represents-- I want to do this in a way that my arrows don't get mixed up. Actually, let me start at the other end. Let me start with what the 7 represents. The 7 literally represents 7 ones. Or another way to think about it, you could say it represents 7 times 1. All of these are equivalent. They represent 7 ones. Now let's think about the 9. That's why I'm doing it from the right, so that the arrows don't have to cross each other. So what does the 9 represent? It represents 9 tens. You could literally imagine you have 9 actual tens. You could have a 10, plus a 10, plus a 10. Do that nine times. That's literally what it represents: 9 actual tens. 9 tens, or you could say it's the same thing as 9 times 10, or 90, either way you want to think about it. So let me write all the different ways to think about it. It represents all of these things: 9 tens, or 9 times 10, or 90. So then we have our 8. Our 8 represents-- we see it's in the hundreds place. It represents 8 hundreds. Or you could view that as being equivalent to 8 times 100-- a hundred, not a thousand-- 8 times 100, or 800. That 8 literally represents 8 hundreds, 800. And then the 4. I think you get the idea here. This represents the thousands place. It represents 4 thousands, which is the same thing as 4 times 1,000, which is the same thing as 4,000. 4,000 is the same thing as 4 thousands. Add it up. And then finally, we have this 1, which is sitting in the ten-thousands place, so it literally represents 1 ten-thousand. You can imagine if these were chips, kind of poker chips, that would represent one of the blue poker chips and each blue poker chip represents 10,000. I don't know if that helps you or not. And 1 ten-thousand is the same thing as 1 times 10,000 which is the same thing as 10,000. So when they ask us to write it in expanded form, we could write 14,897 literally as the sum of these numbers, of its components, or we could write it as the sum of these numbers. Actually, let me write this. This top 7 times 1 is just equal to 7. So 14,897 is the same thing as 10,000 plus 4,000 plus 800 plus 90 plus 7. So you could consider this expanded form, or you could use this version of it, or you could say this the same thing as 1 times 10,000, depending on what people consider to be expanded form-- plus 4 times 1,000 plus 8 times 100 plus 9 times 10 plus 7 times 1. I'll scroll to the right a little bit. So either of these could be considered expanded form.Write 14,897 in expanded form. Let me just rewrite the number, and I'll color code it, and that way, we can keep track of our digits. So we have 14,000. I don't have to write it-- well, let me write it that big. 14,000, 800, and 97-- I already used the blue; maybe I should use yellow-- in expanded form. So let's think about what place each of these digits are in. This right here, the 7, is in the ones place. The 9 is in the tens place. This literally represents 9 tens, and we're going to see this in a second. This literally represents 7 ones. The 8 is in the hundreds place. The 4 is in the thousands place. It literally represents 4,000. And then the 1 is in the ten-thousands place. And you see, every time you move to the left, you move one place to the left, you're multiplying by 10. Ones place, tens place, hundreds place, thousands place, ten-thousands place. Now let's think about what that really means. If this 1 is in the ten-thousands place, that means that it literally represents-- I want to do this in a way that my arrows don't get mixed up. Actually, let me start at the other end. Let me start with what the 7 represents. The 7 literally represents 7 ones. Or another way to think about it, you could say it represents 7 times 1. All of these are equivalent. They represent 7 ones. Now let's think about the 9. That's why I'm doing it from the right, so that the arrows don't have to cross each other. So what does the 9 represent? It represents 9 tens. You could literally imagine you have 9 actual tens. You could have a 10, plus a 10, plus a 10. Do that nine times. That's literally what it represents: 9 actual tens. 9 tens, or you could say it's the same thing as 9 times 10, or 90, either way you want to think about it. So let me write all the different ways to think about it. It represents all of these things: 9 tens, or 9 times 10, or 90. So then we have our 8. Our 8 represents-- we see it's in the hundreds place. It represents 8 hundreds. Or you could view that as being equivalent to 8 times 100-- a hundred, not a thousand-- 8 times 100, or 800. That 8 literally represents 8 hundreds, 800. And then the 4. I think you get the idea here. This represents the thousands place. It represents 4 thousands, which is the same thing as 4 times 1,000, which is the same thing as 4,000. 4,000 is the same thing as 4 thousands. Add it up. And then finally, we have this 1, which is sitting in the ten-thousands place, so it literally represents 1 ten-thousand. You can imagine if these were chips, kind of poker chips, that would represent one of the blue poker chips and each blue poker chip represents 10,000. I don't know if that helps you or not. And 1 ten-thousand is the same thing as 1 times 10,000 which is the same thing as 10,000. So when they ask us to write it in expanded form, we could write 14,897 literally as the sum of these numbers, of its components, or we could write it as the sum of these numbers. Actually, let me write this. This top 7 times 1 is just equal to 7. So 14,897 is the same thing as 10,000 plus 4,000 plus 800 plus 90 plus 7. So you could consider this expanded form, or you could use this version of it, or you could say this the same thing as 1 times 10,000, depending on what people consider to be expanded form-- plus 4 times 1,000 plus 8 times 100 plus 9 times 10 plus 7 times 1. I'll scroll to the right a little bit. So either of these could be considered expanded form.Write 14,897 in expanded form. Let me just rewrite the number, and I'll color code it, and that way, we can keep track of our digits. So we have 14,000. I don't have to write it-- well, let me write it that big. 14,000, 800, and 97-- I already used the blue; maybe I should use yellow-- in expanded form. So let's think about what place each of these digits are in. This right here, the 7, is in the ones place. The 9 is in the tens place. This literally represents 9 tens, and we're going to see this in a second. This literally represents 7 ones. The 8 is in the hundreds place. The 4 is in the thousands place. It literally represents 4,000. And then the 1 is in the ten-thousands place. And you see, every time you move to the left, you move one place to the left, you're multiplying by 10. Ones place, tens place, hundreds place, thousands place, ten-thousands place. Now let's think about what that really means. If this 1 is in the ten-thousands place, that means that it literally represents-- I want to do this in a way that my arrows don't get mixed up. Actually, let me start at the other end. Let me start with what the 7 represents. The 7 literally represents 7 ones. Or another way to think about it, you could say it represents 7 times 1. All of these are equivalent. They represent 7 ones. Now let's think about the 9. That's why I'm doing it from the right, so that the arrows don't have to cross each other. So what does the 9 represent? It represents 9 tens. You could literally imagine you have 9 actual tens. You could have a 10, plus a 10, plus a 10. Do that nine times. That's literally what it represents: 9 actual tens. 9 tens, or you could say it's the same thing as 9 times 10, or 90, either way you want to think about it. So let me write all the different ways to think about it. It represents all of these things: 9 tens, or 9 times 10, or 90. So then we have our 8. Our 8 represents-- we see it's in the hundreds place. It represents 8 hundreds. Or you could view that as being equivalent to 8 times 100-- a hundred, not a thousand-- 8 times 100, or 800. That 8 literally represents 8 hundreds, 800. And then the 4. I think you get the idea here. This represents the thousands place. It represents 4 thousands, which is the same thing as 4 times 1,000, which is the same thing as 4,000. 4,000 is the same thing as 4 thousands. Add it up. And then finally, we have this 1, which is sitting in the ten-thousands place, so it literally represents 1 ten-thousand. You can imagine if these were chips, kind of poker chips, that would represent one of the blue poker chips and each blue poker chip represents 10,000. I don't know if that helps you or not. And 1 ten-thousand is the same thing as 1 times 10,000 which is the same thing as 10,000. So when they ask us to write it in expanded form, we could write 14,897 literally as the sum of these numbers, of its components, or we could write it as the sum of these numbers. Actually, let me write this. This top 7 times 1 is just equal to 7. So 14,897 is the same thing as 10,000 plus 4,000 plus 800 plus 90 plus 7. So you could consider this expanded form, or you could use this version of it, or you could say this the same thing as 1 times 10,000, depending on what people consider to be expanded form-- plus 4 times 1,000 plus 8 times 100 plus 9 times 10 plus 7 times 1. I'll scroll to the right a little bit. So either of these could be considered expanded form.Write 14,897 in expanded form. Let me just rewrite the number, and I'll color code it, and that way, we can keep track of our digits. So we have 14,000. I don't have to write it-- well, let me write it that big. 14,000, 800, and 97-- I already used the blue; maybe I should use yellow-- in expanded form. So let's think about what place each of these digits are in. This right here, the 7, is in the ones place. The 9 is in the tens place. This literally represents 9 tens, and we're going to see this in a second. This literally represents 7 ones. The 8 is in the hundreds place. The 4 is in the thousands place. It literally represents 4,000. And then the 1 is in the ten-thousands place. And you see, every time you move to the left, you move one place to the left, you're multiplying by 10. Ones place, tens place, hundreds place, thousands place, ten-thousands place. Now let's think about what that really means. If this 1 is in the ten-thousands place, that means that it literally represents-- I want to do this in a way that my arrows don't get mixed up. Actually, let me start at the other end. Let me start with what the 7 represents. The 7 literally represents 7 ones. Or another way to think about it, you could say it represents 7 times 1. All of these are equivalent. They represent 7 ones. Now let's think about the 9. That's why I'm doing it from the right, so that the arrows don't have to cross each other. So what does the 9 represent? It represents 9 tens. You could literally imagine you have 9 actual tens. You could have a 10, plus a 10, plus a 10. Do that nine times. That's literally what it represents: 9 actual tens. 9 tens, or you could say it's the same thing as 9 times 10, or 90, either way you want to think about it. So let me write all the different ways to think about it. It represents all of these things: 9 tens, or 9 times 10, or 90. So then we have our 8. Our 8 represents-- we see it's in the hundreds place. It represents 8 hundreds. Or you could view that as being equivalent to 8 times 100-- a hundred, not a thousand-- 8 times 100, or 800. That 8 literally represents 8 hundreds, 800. And then the 4. I think you get the idea here. This represents the thousands place. It represents 4 thousands, which is the same thing as 4 times 1,000, which is the same thing as 4,000. 4,000 is the same thing as 4 thousands. Add it up. And then finally, we have this 1, which is sitting in the ten-thousands place, so it literally represents 1 ten-thousand. You can imagine if these were chips, kind of poker chips, that would represent one of the blue poker chips and each blue poker chip represents 10,000. I don't know if that helps you or not. And 1 ten-thousand is the same thing as 1 times 10,000 which is the same thing as 10,000. So when they ask us to write it in expanded form, we could write 14,897 literally as the sum of these numbers, of its components, or we could write it as the sum of these numbers. Actually, let me write this. This top 7 times 1 is just equal to 7. So 14,897 is the same thing as 10,000 plus 4,000 plus 800 plus 90 plus 7. So you could consider this expanded form, or you could use this version of it, or you could say this the same thing as 1 times 10,000, depending on what people consider to be expanded form-- plus 4 times 1,000 plus 8 times 100 plus 9 times 10 plus 7 times 1. I'll scroll to the right a little bit. So either of these could be considered expanded form.Write 14,897 in expanded form. Let me just rewrite the number, and I'll color code it, and that way, we can keep track of our digits. So we have 14,000. I don't have to write it-- well, let me write it that big. 14,000, 800, and 97-- I already used the blue; maybe I should use yellow-- in expanded form. So let's think about what place each of these digits are in. This right here, the 7, is in the ones place. The 9 is in the tens place. This literally represents 9 tens, and we're going to see this in a second. This literally represents 7 ones. The 8 is in the hundreds place. The 4 is in the thousands place. It literally represents 4,000. And then the 1 is in the ten-thousands place. And you see, every time you move to the left, you move one place to the left, you're multiplying by 10. Ones place, tens place, hundreds place, thousands place, ten-thousands place. Now let's think about what that really means. If this 1 is in the ten-thousands place, that means that it literally represents-- I want to do this in a way that my arrows don't get mixed up. Actually, let me start at the other end. Let me start with what the 7 represents. The 7 literally represents 7 ones. Or another way to think about it, you could say it represents 7 times 1. All of these are equivalent. They represent 7 ones. Now let's think about the 9. That's why I'm doing it from the right, so that the arrows don't have to cross each other. So what does the 9 represent? It represents 9 tens. You could literally imagine you have 9 actual tens. You could have a 10, plus a 10, plus a 10. Do that nine times. That's literally what it represents: 9 actual tens. 9 tens, or you could say it's the same thing as 9 times 10, or 90, either way you want to think about it. So let me write all the different ways to think about it. It represents all of these things: 9 tens, or 9 times 10, or 90. So then we have our 8. Our 8 represents-- we see it's in the hundreds place. It represents 8 hundreds. Or you could view that as being equivalent to 8 times 100-- a hundred, not a thousand-- 8 times 100, or 800. That 8 literally represents 8 hundreds, 800. And then the 4. I think you get the idea here. This represents the thousands place. It represents 4 thousands, which is the same thing as 4 times 1,000, which is the same thing as 4,000. 4,000 is the same thing as 4 thousands. Add it up. And then finally, we have this 1, which is sitting in the ten-thousands place, so it literally represents 1 ten-thousand. You can imagine if these were chips, kind of poker chips, that would represent one of the blue poker chips and each blue poker chip represents 10,000. I don't know if that helps you or not. And 1 ten-thousand is the same thing as 1 times 10,000 which is the same thing as 10,000. So when they ask us to write it in expanded form, we could write 14,897 literally as the sum of these numbers, of its components, or we could write it as the sum of these numbers. Actually, let me write this. This top 7 times 1 is just equal to 7. So 14,897 is the same thing as 10,000 plus 4,000 plus 800 plus 90 plus 7. So you could consider this expanded form, or you could use this version of it, or you could say this the same thing as 1 times 10,000, depending on what people consider to be expanded form-- plus 4 times 1,000 plus 8 times 100 plus 9 times 10 plus 7 times 1. I'll scroll to the right a little bit. So either of these could be considered expanded form.Write 14,897 in expanded form. Let me just rewrite the number, and I'll color code it, and that way, we can keep track of our digits. So we have 14,000. I don't have to write it-- well, let me write it that big. 14,000, 800, and 97-- I already used the blue; maybe I should use yellow-- in expanded form. So let's think about what place each of these digits are in. This right here, the 7, is in the ones place. The 9 is in the tens place. This literally represents 9 tens, and we're going to see this in a second. This literally represents 7 ones. The 8 is in the hundreds place. The 4 is in the thousands place. It literally represents 4,000. And then the 1 is in the ten-thousands place. And you see, every time you move to the left, you move one place to the left, you're multiplying by 10. Ones place, tens place, hundreds place, thousands place, ten-thousands place. Now let's think about what that really means. If this 1 is in the ten-thousands place, that means that it literally represents-- I want to do this in a way that my arrows don't get mixed up. Actually, let me start at the other end. Let me start with what the 7 represents. The 7 literally represents 7 ones. Or another way to think about it, you could say it represents 7 times 1. All of these are equivalent. They represent 7 ones. Now let's think about the 9. That's why I'm doing it from the right, so that the arrows don't have to cross each other. So what does the 9 represent? It represents 9 tens. You could literally imagine you have 9 actual tens. You could have a 10, plus a 10, plus a 10. Do that nine times. That's literally what it represents: 9 actual tens. 9 tens, or you could say it's the same thing as 9 times 10, or 90, either way you want to think about it. So let me write all the different ways to think about it. It represents all of these things: 9 tens, or 9 times 10, or 90. So then we have our 8. Our 8 represents-- we see it's in the hundreds place. It represents 8 hundreds. Or you could view that as being equivalent to 8 times 100-- a hundred, not a thousand-- 8 times 100, or 800. That 8 literally represents 8 hundreds, 800. And then the 4. I think you get the idea here. This represents the thousands place. It represents 4 thousands, which is the same thing as 4 times 1,000, which is the same thing as 4,000. 4,000 is the same thing as 4 thousands. Add it up. And then finally, we have this 1, which is sitting in the ten-thousands place, so it literally represents 1 ten-thousand. You can imagine if these were chips, kind of poker chips, that would represent one of the blue poker chips and each blue poker chip represents 10,000. I don't know if that helps you or not. And 1 ten-thousand is the same thing as 1 times 10,000 which is the same thing as 10,000. So when they ask us to write it in expanded form, we could write 14,897 literally as the sum of these numbers, of its components, or we could write it as the sum of these numbers. Actually, let me write this. This top 7 times 1 is just equal to 7. So 14,897 is the same thing as 10,000 plus 4,000 plus 800 plus 90 plus 7. So you could consider this expanded form, or you could use this version of it, or you could say this the same thing as 1 times 10,000, depending on what people consider to be expanded form-- plus 4 times 1,000 plus 8 times 100 plus 9 times 10 plus 7 times 1. I'll scroll to the right a little bit. So either of these could be considered expanded form.Write 14,897 in expanded form. Let me just rewrite the number, and I'll color code it, and that way, we can keep track of our digits. So we have 14,000. I don't have to write it-- well, let me write it that big. 14,000, 800, and 97-- I already used the blue; maybe I should use yellow-- in expanded form. So let's think about what place each of these digits are in. This right here, the 7, is in the ones place. The 9 is in the tens place. This literally represents 9 tens, and we're going to see this in a second. This literally represents 7 ones. The 8 is in the hundreds place. The 4 is in the thousands place. It literally represents 4,000. And then the 1 is in the ten-thousands place. And you see, every time you move to the left, you move one place to the left, you're multiplying by 10. Ones place, tens place, hundreds place, thousands place, ten-thousands place. Now let's think about what that really means. If this 1 is in the ten-thousands place, that means that it literally represents-- I want to do this in a way that my arrows don't get mixed up. Actually, let me start at the other end. Let me start with what the 7 represents. The 7 literally represents 7 ones. Or another way to think about it, you could say it represents 7 times 1. All of these are equivalent. They represent 7 ones. Now let's think about the 9. That's why I'm doing it from the right, so that the arrows don't have to cross each other. So what does the 9 represent? It represents 9 tens. You could literally imagine you have 9 actual tens. You could have a 10, plus a 10, plus a 10. Do that nine times. That's literally what it represents: 9 actual tens. 9 tens, or you could say it's the same thing as 9 times 10, or 90, either way you want to think about it. So let me write all the different ways to think about it. It represents all of these things: 9 tens, or 9 times 10, or 90. So then we have our 8. Our 8 represents-- we see it's in the hundreds place. It represents 8 hundreds. Or you could view that as being equivalent to 8 times 100-- a hundred, not a thousand-- 8 times 100, or 800. That 8 literally represents 8 hundreds, 800. And then the 4. I think you get the idea here. This represents the thousands place. It represents 4 thousands, which is the same thing as 4 times 1,000, which is the same thing as 4,000. 4,000 is the same thing as 4 thousands. Add it up. And then finally, we have this 1, which is sitting in the ten-thousands place, so it literally represents 1 ten-thousand. You can imagine if these were chips, kind of poker chips, that would represent one of the blue poker chips and each blue poker chip represents 10,000. I don't know if that helps you or not. And 1 ten-thousand is the same thing as 1 times 10,000 which is the same thing as 10,000. So when they ask us to write it in expanded form, we could write 14,897 literally as the sum of these numbers, of its components, or we could write it as the sum of these numbers. Actually, let me write this. This top 7 times 1 is just equal to 7. So 14,897 is the same thing as 10,000 plus 4,000 plus 800 plus 90 plus 7. So you could consider this expanded form, or you could use this version of it, or you could say this the same thing as 1 times 10,000, depending on what people consider to be expanded form-- plus 4 times 1,000 plus 8 times 100 plus 9 times 10 plus 7 times 1. I'll scroll to the right a little bit. So either of these could be considered expanded form.
    (2 votes)
    Default Khan Academy avatar avatar for user
  • blobby green style avatar for user 580
    How many squares do we have to put in
    (0 votes)
    Default Khan Academy avatar avatar for user
  • aqualine ultimate style avatar for user clstewart8681
    yep it is
    (0 votes)
    Default Khan Academy avatar avatar for user
  • winston default style avatar for user connormarneweck
    find bh12107 at recent
    (0 votes)
    Default Khan Academy avatar avatar for user
  • winston default style avatar for user connormarneweck
    can you follow me please!
    call me the defender i up vote people and help them.
    (0 votes)
    Default Khan Academy avatar avatar for user
  • sneak peak blue style avatar for user 天童さとり︶^︶
    honestly this is my life now. - and also can't you add any numbers of decimals with whole numbers??
    (0 votes)
    Default Khan Academy avatar avatar for user
  • winston default style avatar for user connormarneweck
    bh12107 also said he hates math who hates math? down vote him! look down
    and find bh12107 look at what he said.
    (0 votes)
    Default Khan Academy avatar avatar for user

Video transcript

- [Instructor] In this video, we're going to try to figure out what 4/10 divided by five is. So pause this video and see if you can think about it before we work through it together. We're really going to think about approaching this visually. All right, now let's work through this together. Let's actually try to think about what 4/10 looks like. So if you view this entire square as a whole, you see that we've divided it into 10 equal columns or 10 equal sections, and four of those tenths are shaded in, so what you see here in blue is 4/10. But how do we divide that into five and make sense of it? Well, one way to think about it is to imagine 4/10 not just as 4/10, but to imagine it as 40/100, so this would be imagining it as 40/100. So we can re-write 4/10 divided by 5 as 40/100 divided by 5, and now we can think about taking these 40 hundredths, each of these little squares is a hundredth, and divide it into five equal sections, and then we can say, well, how many hundredths are in each of those five equal sections? So let's do that. So let's see, this is one, this is two, this is three, this is four and then we have five equal sections. So how many hundredths are in each of those equal sections? Well we can see in each of them you have one, two, three, four, five, six, seven, eight. So 40/100 divided by five is going to be 8/100, because we have eight of these little squares in each of those five equal sections. So 8/100 we would like this. And so 40/100 divided by five is 8/100, then 4/10 divided by five is also equal to 8/100.