If you're seeing this message, it means we're having trouble loading external resources on our website.

If you're behind a web filter, please make sure that the domains *.kastatic.org and *.kasandbox.org are unblocked.

Main content

Worked example: classifying numbers

Deciding which number set 3.4028 belongs to: integers, rationals, or irrationals? Created by Sal Khan and Monterey Institute for Technology and Education.

Want to join the conversation?

  • mr pants teal style avatar for user jackamonk
    With sets, what is a union and an intersection?
    (10 votes)
    Default Khan Academy avatar avatar for user
    • hopper cool style avatar for user Christi
      Think union meaning getting together. We have marriage that is talked about as a union (getting a couple together and saying they are linked as partners). You have unions that are people that get together to bargin in a workplace. Or you can have unions of sets where you take two sets and put them together.

      Think intersection as what two things have in common. An intersection in a city is a place where two streets cross and a place where you are on both streets at once. An intersection of functions on a plane are the points which are part of both (or all) functions. An intersection with sets are the points that are in common between the sets.
      (23 votes)
  • piceratops ultimate style avatar for user Magnus Schmeikal
    I'm a bit confused about doing arithmetic with numbers that go on forever. Let me show you:
    If x = 0.999... then
    10x = 9.999...
    we then get
    9x = 10x - x = 9.999... - 0.999... = 9
    9x = 9
    x = 9x/9 = 9/9 = 1
    x = 1
    But x is defined as 0.999...
    Can someone explain this? Am I missing something here?
    (14 votes)
    Default Khan Academy avatar avatar for user
  • starky ultimate style avatar for user Karkat
    Okay, so the number in the video has a .28 repeating forever. But are there numbers that have something like .28 repeating a hundred times, and then they terminate? It seems impossible, since once you get into the pattern the second time while dividing, I don't see any way for it to get out of the pattern.

    But I don't know for sure. What's the most times a number can repeat itself without it having infinite repetitions? Is the answer that it can't repeat at all unless its infinite? Is there a different answer if it's a single digit that repeats instead of multiple?
    (11 votes)
    Default Khan Academy avatar avatar for user
    • male robot hal style avatar for user Harker, Brandon
      It's simpler to see for a single repeating decimal.
      For .3 repeating, that would be the same as 3/9 (3 divided by 9).
      If you want it to repeat a certain number of times:
      .3 = 3/10
      .33 = 33/100
      .333 = 333/1000
      and so on.

      To get .28 repeating several times without going forever, you could look at it as a pattern. You could punch this into a calculator to see the pattern.

      .28 = 28/100
      .2828 = 2828/10000
      .282828 = 282828/1000000
      and so on.

      .28 repeating would be the same as 28/99.

      So, to answer your question, yes it's definitely possible to have a number that repeats a certain number of times without repeating forever.
      (15 votes)
  • blobby green style avatar for user anabelbnb
    The product of two irrational numbers is rational or irrational? And why? Thank you.
    (6 votes)
    Default Khan Academy avatar avatar for user
  • male robot donald style avatar for user robinamsters
    So does this mean that when numbers repeat they are rational number? Because that would make e a rational number.
    (3 votes)
    Default Khan Academy avatar avatar for user
    • spunky sam blue style avatar for user Bob Snelling
      You probably saw that e = 2.718281828 ... The fact that 1828 repeats here is pure coincidence (1 in 10,000 probability of that happening!). If you carry e out to further decimal places you will see that the 1828 repeats only once, and after that, it behaves much like pi does (ie, non-repeating). e = 2.7182818284590452353602874713526 ...
      (I picked that up from wikipedia)
      (10 votes)
  • mr pink red style avatar for user Spuler9
    what exactly is a irrational number
    (5 votes)
    Default Khan Academy avatar avatar for user
  • blobby green style avatar for user Hanna Sudhiram
    Can any number with repeating decimals be called a rational number?
    (3 votes)
    Default Khan Academy avatar avatar for user
  • ohnoes default style avatar for user mspatel999
    When is something not a real number?
    (2 votes)
    Default Khan Academy avatar avatar for user
    • leaf grey style avatar for user Qeeko
      Something is not a real number exactly when it is not a real number. A better question would be: "What is a real number?". The answer to this question is more deep and subtle than it appears.

      One usually defines the real numbers following this path:
      Natural numbers --> Integers --> Rational Numbers --> Real numbers.

      Constructing the real numbers from the rational numbers is usually done in one of two ways:
      I. Defining a real number as a Dedekind cut of rational numbers.
      II. Defining a real number as an equivalence class of Cauchy sequences of rational numbers.

      The full constructions are rather lengthy, so I refer you to some books for the details:
      I. Rudin, Walter: Principles of Mathematical Analysis, 3rd edition (1976), page 17.
      II. Tao, Terence, Analysis I, 2nd edition, the first few chapters.
      (3 votes)
  • aqualine ultimate style avatar for user c h i c k e n s
    What are some examples of non-real numbers? I know there are imaginary numbers but are there anything other than that? Thanks!
    (3 votes)
    Default Khan Academy avatar avatar for user
    • primosaur seed style avatar for user Ian Pulizzotto
      There is a system of numbers invented by the British combinatorial game theorist John Conway, called the surreal numbers. The surreal numbers include the real numbers and much more! If we let omega (which I'll call w) represent what we usually think of as infinity, there are many meaningfully different infinite surreal numbers such as w, w/2, sqrt(w), w-1, w+1, 2w, w^2, etc. There are also infinitesimally tiny surreal numbers that are positive but less than all positive real numbers, such as epsilon (which is 1/w), epsilon/2, 2*epsilon, sqrt(epsilon), epsilon^2, etc. The game called Red-Blue Hackenbush models surreal numbers!

      Have a blessed, wonderful day!
      (1 vote)
  • blobby green style avatar for user Chris Lowe
    how many rational numbers are between -5 and 5, is 1/2 and 5/1 acceptable? it seems like i could put any two of the integers together or am i missing something?
    (2 votes)
    Default Khan Academy avatar avatar for user
    • leaf green style avatar for user nathen.gallagher
      I believe there would be an infinite number of rational numbers between -5 and 5. A rational number is any number that is either repeating or terminating beyond its decimal, or in other words any number that can be defined as m/n, as Sal says.

      So between even just 1 and 2, there are infinite rational numbers. You have 1.1, that's rational. You have 1.11, that's rational too. You have 1.111, that's still rational. You can add as many 1s to the end of that as you want, on to infinity, and it will still be rational.
      (2 votes)

Video transcript

What number sets does the number 3.4028 repeating belong to? And before even answering the question, let's just think about what this represents. And especially what this line on top means. So this line on top means that the 28 just keep repeating forever. So I could express this number as 3.4028, but the 28 just keep repeating. Just keep repeating on and on and on forever. I could just keep writing them forever and ever. And obviously, it's just easier to write this line over the 28 to say that it repeats forever. Now let's think about what number sets it belongs to. Well, the broadest number set we've dealt with so far is the real numbers. And this definitely belongs to the real numbers. The real numbers is essentially the entire number line that we're used to using. And 3.4028 repeating sits someplace over here. If this is negative 1, this is 0, 1, 2, 3, 4. 3.4028 is a little bit more than 3.4, a little bit less than 3.41. It would sit right over there. So it definitely sits on the number line. It's a real number. So it definitely is real. It definitely is a real number. But the not so obvious question is whether it is a rational number. Remember, a rational number is one that can be expressed as a rational expression or as a fraction. If I were to tell you that p is rational, that means that p can be expressed as the ratio of two integers. That means that p can be expressed as the ratio of two integers, m/n. So the question is, can I express this as the ratio of two integers? Or another way to think of it, can I express this as a fraction? And to do that, let's actually express it as a fraction. Let's define x as being equal to this number. So x is equal to 3.4028 repeating. Let's think about what 10,000x is. And the only reason why I want 10,000x is because I want to move the decimal point all the way to the right over here. So 10,000x. What is that going to be equal to? Well every time you multiply by a power of 10, you shift the decimal one to the right. 10,000 is 10 to the fourth power. So it's like shifting the decimal over to the right four spaces. 1, 2, 3, 4. So it'll be 34,028. But these 28's just keep repeating. So you'll still have the 28's go on and on, and on and on, and on after that. They just all got shifted to the left of the decimal point by five spaces. You can view it that way. That makes sense. It's nearly 3 and 1/2. If you multiply by 10,000, you get almost 35,000. So that's 10,000x. Now, let's also think about 100x. And my whole exercise here is I want to get two numbers that, when I subtract them and they're in terms of x, the repeating part disappears. And then we can just treat them as traditional numbers. So let's think about what 100x is. 100x. That moves this decimal point. Remember, the decimal point was here originally. It moves it over to the right two spaces. So 100x would be 300-- Let me write it like this. It would be 340.28 repeating. We could have put the 28 repeating here, but it wouldn't have made as much sense. You always want to write it after the decimal point. So we have to write 28 again to show that it is repeating. Now something interesting is going on. These two numbers, they're just multiples of x. And if I subtract the bottom one from the top one, what's going to happen? Well the repeating part is going to disappear. So let's do that. Let's do that on both sides of this equation. Let's do it. So on the left-hand side of this equation, 10,000x minus 100x is going to be 9,900x. And on the right-hand side, let's see-- The decimal part will cancel out. And we just have to figure out what 34,028 minus 340 is. So let's just figure this out. 8 is larger than 0, so we won't have to do any regrouping there. 2 is less than 4. So we will have to do some regrouping, but we can't borrow yet because we have a 0 over there. And 0 is less than 3, so we have to do some regrouping there or some borrowing. So let's borrow from the 4 first. So if we borrow from the 4, this becomes a 3 and then this becomes a 10. And then the 2 can now borrow from the 10. This becomes a 9 and this becomes a 12. And now we can do the subtraction. 8 minus 0 is 8. 12 minus 4 is 8. 9 minus 3 is 6. 3 minus nothing is 3. 3 minus nothing is 3. So 9,900x is equal to 33,688. We just subtracted 340 from this up here. So we get 33,688. Now, if we want to solve for x, we just divide both sides by 9,900. Divide the left by 9,900. Divide the right by 9,900. And then, what are we left with? We're left with x is equal to 33,688 over 9,900. Now what's the big deal about this? Well, x was this number. x was this number that we started off with, this number that just kept on repeating. And by doing a little bit of algebraic manipulation and subtracting one multiple of it from another, we're able to express that same exact x as a fraction. Now this isn't in simplest terms. I mean they're both definitely divisible by 2 and it looks like by 4. So you could put this in lowest common form, but we don't care about that. All we care about is the fact that we were able to represent x, we were able to represent this number, as a fraction. As the ratio of two integers. So the number is also rational. It is also rational. And this technique we did, it doesn't only apply to this number. Any time you have a number that has repeating digits, you could do this. So in general, repeating digits are rational. The ones that are irrational are the ones that never, ever, ever repeat, like pi. And so the other things, I think it's pretty obvious, this isn't an integer. The integers are the whole numbers that we're dealing with. So this is someplace in between the integers. It's not a natural number or a whole number, which depending on the context are viewed as subsets of integers. So it's definitely none of those. So it is real and it is rational. That's all we can say about it.