If you're seeing this message, it means we're having trouble loading external resources on our website.

If you're behind a web filter, please make sure that the domains *.kastatic.org and *.kasandbox.org are unblocked.

# Graphing sequence relationships

Sal plots ordered pairs based on sequence relationships.  Created by Sal Khan.

## Want to join the conversation?

• Is there a way to describe both sequences simultaneously in a single expression? • Not really, because you need an equation to describe how x gives you y. To do this you need an equation. 5x by itself would be considered an expression. But that is not enough info to give you the sequence for getting y. You need the "equation" 5x=y to describe the sequences for x and y to plot them. Hope this helps. :)
• Can anybody tell me why x and y are traditional letters? • Can someone help me? I can't figure out the following challenge Visualizing and interpreting relationships between patterns. If you see this please answer! Thanks for your time • Think of the plot area as two number lines. The first number in an ordered pair goes to the right and the second number in an ordered pair goes number goes up. (Right UP!). Easy enough to plot on the graph. That's the easy part. The part you might be having problems with is finding out the relationship between the numbers.

Example

Sequence X: Start at the number 5 and the rule is add one. So sequence X would read 5, 6, 7, 8, 9 and so on.
Sequence Y: Start at the number 10 and the rule is add two. So the sequence Y would read 10, 12, 14, 16, 18 and so on.
Your ordered pairs would be (5,10) (6,12) (7,14) (8,16) (9,18)
Do you notice a pattern? 5x2=? 6x2=?
Could you say that the numbers on the Y axis are two times as large? I hope this helps some.
• you are boring got it add more fun to it • math is very fun in my opinion!! • Voiceover: You are given the following starting numbers and rules for two sequences of numbers. The first sequence, Sequence x, starting number should be one, and then the rule is add one. Sequence y, starting number should be five, and then the rule should be add five. Fill in the table with the first three terms of x and y. Then plot the ordered pairs (x,y) on the graph below. So let's see, Sequence x. They say, the starting number, the starting number should be one. So the starting number is one, and then the rule, to get to the next number, you just add one. So, one plus one is two. Two plus one is three. Fairly straight forward. Now, let's look at Sequence y. They're saying the starting number should be five. Starting number five, and then the rule is, to get the next term, we just add five. So, five plus five is ten, ten plus five is fifteen. Now they want us to plot these things. Let's see, we plot them as ordered pairs, so we're going to have the point (1,5). When x is one, y is five. We see that there, x is one, y is five. When x is two, y is ten. When x is two, y is ten, and then when x is three, y is fifteen. When x is three, y is fifteen, and wee see that. For every one we move to the right, for every one we increase in the horizontal direction, every one we increase in x, we increase five for y. We increase one for x, we increase five for y. So now we just have one last thing to answer. The terms in Sequence y are blank, times the terms in Sequence x. So you immediately see, this term, five, is five times one. Ten is five times two. Fifteen is five times three, and it makes sense. You started five times higher, and here you added one each time, and we see that visually right over here, we add one each time, while here we add five times as much each time. We add five each time. The terms in Sequence y are five times the terms in Sequence x. We got it right. • Why X and Y and not any other letters? • s and a
(1 vote) • what do i do
(1 vote) • why does X go first? and how does this apply in real life? 