Main content
7th grade
Course: 7th grade > Unit 4
Lesson 4: Identifying proportional relationships- Intro to proportional relationships
- Proportional relationships: movie tickets
- Proportional relationships: bananas
- Proportional relationships: spaghetti
- Identify proportional relationships
- Proportional relationships
- Proportional relationships
- Is side length & area proportional?
- Is side length & perimeter proportional?
© 2023 Khan AcademyTerms of usePrivacy PolicyCookie Notice
Proportional relationships: bananas
A proportionality problem about eating bananas.
Want to join the conversation?
- I have four questions:
.When a problem is not proportional, do we just say it's not proportional and go on to the next question?
.What kind of relationship is it if it's not proportional?
.Could we still solve it even if it's not proportional?
. And why would he waste money on 100 bananas? :)(15 votes)- 1. Since there's a way to solve nonproportional relationships, you would still solve it (in a graph or a table).
2. Non-proportional :)
3. Yes, assuming the problem still makes sense.
4. Maybe he really likes bananas and they were on sale if you got 100 of them? idk(7 votes)
- Why don't nate's bananas go bad?(9 votes)
- he or she must've putted something or injected something to keep the bananas healthy(4 votes)
- so... he's food poisoning himself by eating 49-day-old bananas?(7 votes)
- I bet he is. He's doing it for insurance money.(4 votes)
- how he get so many bananas(6 votes)
- I didn't know eating bananas would be this hard(4 votes)
- I understand proportions in other videos (it seems clear and simple to me), but this video confuses me. Any help?(0 votes)
- In this case he is presenting the type of problem that will generally look like it could be proportional because Nate is always eating two bananas a day, but with the way the question is worded (trick question almost) this particular problem is not proportional (proportional being as one number increases so does the other number at a constant ratio). It is more along the lines of inversely proportion which is as one number increases the other decreases.(7 votes)
- Had it been "Number of days left", it would have been a proportional relationship.(3 votes)
- i dont understand
cant you just divide without ratios?(2 votes)- well sure but if you use ratios then youre doing it right and if you dont you will be executed so its kinda a lose lose(1 vote)
- I think that the question in this problem ("Is the number of bananas Nate has left proportional to the number of days that pass?") is not correct and it should be "Is the number of bananas Nate has left proportional to the number of days that HAVE PASSED?"
What do you think?(2 votes)
Video transcript
- [Voiceover] Today, Nate has 100 bananas. He will eat two of them every day. Is the number of bananas Nate has left proportional to the number of days that pass? And I encourage you to pause this video and think about this. And what's interesting here, they're not saying, is the number of bananas eaten, they're saying the number of bananas Nate has left, proportional to the number of days that pass. So let's draw a little table here to think about this a little bit more. So I'm gonna make three columns. I'm gonna make three columns. So in the first column, this is gonna be the number of days that pass. So number of days... that pass. So that's this right over here, the number of days that pass. And this middle column, I'm gonna write the number of bananas Nate has left. Number of bananas... bananas left. And over here, I'm gonna make the ratio between the two. In order for this to be a proportional relationship, the ratio between these two has to be constant. So bananas left. So I'm gonna divide the second column by the first column. Bananas left... left, divided by days passed. Days passed. All right, so let's think about it a little bit. When one day has passed, how many bananas will he have left? Well, in that one day he will have eaten two bananas, so you're going to have 98 bananas left. And so what's the ratio of bananas left to days passed? Well, it's 98 over one, which is going to be equal to 98. All right. When two days have passed, how many bananas is he gonna have left? Well, he's going to consume two more bananas, so he's going to have 96 left, and so what's the ratio? It's going to be 96 to two, which is equal to 48. So clearly this ratio is not constant. It changed just from going to one day to the next day. So we don't have a constant ratio of bananas left to days passed, so this is not, this is not a proportional, proportional relationship. Now, things might've been a little bit different if they said the number of bananas Nate has eaten, is that proportional to the number of days that passed? Well, yeah, sure, because then, if this was the number of bananas eaten, if this was the number of bananas eaten, then it would always be two times the number of days that pass, so that would be two, and then that would be four, and then these ratios would always be two. But that's not what they asked for. They wanted us to compare number of bananas left to number of days that pass.