If you're seeing this message, it means we're having trouble loading external resources on our website.

If you're behind a web filter, please make sure that the domains *.kastatic.org and *.kasandbox.org are unblocked.

Lesson 5: Mean and median challenge problems

# Mean as the balancing point

Explore how we can think of the mean as the balancing point of a data distribution.
You know how to find the mean by adding up and dividing. In this article, we'll think about the mean as the balancing point. Let's get started!

## Part 1: Find the mean

Find the mean of left brace, 5, comma, 7, right brace.

Find the mean of left brace, 5, comma, 6, comma, 7, right brace.

Interesting! In the first two problems, the data was "balanced" around the number six. Try the next one without finding the total or dividing. Instead, think about how the numbers are balanced around the mean.
Find the mean of left brace, 1, comma, 3, comma, 5, right brace.

Notice how the 1 and 5 were "balanced" on either side of the 3:
Find the mean of left brace, 4, comma, 7, comma, 10, right brace.

Can you see how the data points are always balanced around the mean? Let's try one more!
Find the mean of left brace, 2, comma, 3, comma, 5, comma, 6, right brace.

## Part 2: A new way of thinking about the mean

You might have noticed in Part 1 that it's possible to find the mean without finding the total or dividing for some simple data sets.
Key idea: We can think of the mean as the balancing point , which is a fancy way of saying that the total distance from the mean to the data points below the mean is equal to the total distance from the mean to the data points above the mean.

### Example

In Part 1, you found the mean of left brace, 2, comma, 3, comma, 5, comma, 6, right brace to be start color #e07d10, 4, end color #e07d10. We can see that the total distance from the mean to the data points below the mean is equal to the total distance from the mean to the data points above the mean because start color #e84d39, 1, end color #e84d39, plus, start color #e84d39, 2, end color #e84d39, equals, start color #1fab54, 1, end color #1fab54, plus, start color #1fab54, 2, end color #1fab54:

#### Reflection questions

What is the total distance start color #e84d39, start text, b, e, l, o, w, end text, end color #e84d39 the mean in this example?

What is the total distance start color #1fab54, start text, a, b, o, v, e, end text, end color #1fab54 the mean in this example?

## Part 3: Is the mean always the balancing point?

Yes! It is always true that the total distance below the mean is equal to the total distance above the mean. It just happens to be easier to see in some data sets than others.
For example let's consider the data set left brace, 2, comma, 3, comma, 6, comma, 9, right brace.
Here's how we can calculate the mean:
start fraction, 2, plus, 3, plus, 6, plus, 9, divided by, 4, end fraction, equals, start color #e07d10, 5, end color #e07d10
And we can see that the total distance below the mean is equal to the total distance above the mean because start color #e84d39, 2, end color #e84d39, plus, start color #e84d39, 3, end color #e84d39, equals, start color #1fab54, 1, end color #1fab54, plus, start color #1fab54, 4, end color #1fab54:

## Part 4: Practice

### Problem 1

Which of the lines represents the mean of the data points shown below?