Main content
6th grade
Course: 6th grade > Unit 8
Lesson 2: Areas of trianglesArea of a triangle
The area of a rectangle and a parallelogram is found by multiplying the base by the height. For a triangle, the area is half of a parallelogram's, so it's calculated by multiplying the base by the height and then dividing by 2.
Want to join the conversation?
- is there another formula(83 votes)
- Interesting question!
Given the length of any base and the height (altitude) perpendicular to the side that is chosen as the base, the area formula of one half base times height is about as simple as it gets.
If instead the lengths of the three sides are given (but no heights are given), there is a much more complex formula for the area of the triangle, called Heron's formula. Let a, b, and c represent the lengths of the sides, and let S = (a+b+c)/2, that is, S represents half the perimeter.
Then the area is given by A = squareroot[S(S - a)(S - b)(S - c)].(104 votes)
- Why is math important?(36 votes)
- Math helps us think analytically and have better reasoning abilities. Analytical thinking refers to the ability to think critically about the world around us. ... Analytical and reasoning skills are essential because they help us solve problems and look for solutions(28 votes)
- What if the tringle has 1 number and you have to find the area?(6 votes)
- To calculate the area of a triangle given one side and two angles, solve for another side using the Law of Sines, then find the area with the formula: area = 1/2 × b × c × sin(A) video link is https://youtu.be/wTkH288r84s.
also i need 25 upvotes on this answer plz
Ty(26 votes)
- Is the answer still units squared or square units?(15 votes)
- Yes, the answer will be in units squared (even though you are measuring a △ and not a □)!(5 votes)
- i really don't get this concept can any one discripe it in a better form or discription(7 votes)
- So if you know how to find area of a rectangle or square this should make sense. Use the formula Base x Height divided by 2. Hope that helped!(15 votes)
- ⠀⠀⠈⠈⠉⠉⠈⠈⠈⠉⠉⠉⠉⠉⠉⠉⠉⠙⠻⣄⠉⠉⠉⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠓⣄⠀⠀⢀⠀⢀⣀⣤⠄⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⢷⣉⣩⣤⠴⠶⠶⠒⠛⠛⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⣴⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⣧⠤⠶⠒⠚⠋⠉⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⢀⣾⡍⠀⠀⠀⠀⠀⠀⠀⠀⢠⣾⣫⣭⣷⠶⢶⣤⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠸⣆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠶⠶⠖⠚⠛⠛⣹⠏⠀⠀⠀⠀⠀⠀⠀⠀⠴⠛⠛⠉⡁⠀⠀⠙⠻⣿⣷⣄⡀⠀⠀⠀⠀⠀⠀⠀⠀⢹⡄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⢠⡏⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣴⣿⣿⡷⠷⢿⣦⣤⣈⡙⢿⣿⢆⣴⣤⡄⠀⠀⠀⠀⢸⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⣠⣤⡀⣸⡄⠀⠀⠀⠀⠀⠀⠀⢀⣤⣿⣿⣟⣩⣤⣴⣤⣌⣿⣿⣿⣦⣹⣿⢁⣿⣿⣄⣀⡀⠀⢸⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⢠⣿⠋⠻⢿⡁⠀⠀⠀⠀⠀⠀⠀⠀⢸⡿⠿⠛⢦⣽⣿⣿⢻⣿⣿⣿⣿⠋⠁⠘⣿⣿⣿⣿⣿⣿⣼⣧⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⢸⣿⠁⠀⠀⠙⠆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠒⠿⣿⣯⣼⣿⡿⠟⠃⠀⠀⠀⣿⣿⣿⣿⣿⡛⣿⡟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⢸⣧⣴⣿⡟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣺⠟⠃⠀⠀⠀⠀⠀⠀⠙⣿⣿⣿⣿⣿⣿⢁⣀⣀⣀⣀⣀⣠⣀⣀⢀⢀⢀
⠀⠀⢿⠿⣿⡄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⡆⠙⠛⠛⠙⢻⣶⣶⣾⣿⣿⣿⣿⣿⣿⣿⣿⣿
⣿⣿⡇⠀⠘⠃⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡞⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿
⡟⢿⣿⣆⠀⣸⠇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢄⡼⠁⢀⣀⡀⠀⠀⠀⣦⣄⠀⣠⡄⣸⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿
⣷⣬⢻⣿⡿⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⣧⣰⣿⡿⠿⠦⢤⣴⣿⣿⣷⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿
⣿⣿⣸⣿⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠛⠛⠛⠒⣿⣿⣿⡿⠟⠹⣼⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿
⣿⠸⣿⣿⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣿⣿⣿⡖⠀⢠⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿
⡿⣾⣿⣸⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣴⣆⣀⣀⣤⣴⣶⣶⣾⣿⣷⣦⣴⣼⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿
⡇⣿⣿⡛⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⢾⡟⠛⠛⠻⠛⠛⠛⠿⠿⠿⠿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿
⠓⢁⣬⣿⠇⠀⠀⠀⠀⠀⢠⡀⠀⠀⠀⠀⠀⢰⡿⣻⠇⠀⠀⠀⠀⠀⣠⣶⣶⣶⣶⣿⣿⡿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿
⢐⣯⠞⠁⠀⠀⠀⠀⠀⠀⣄⠱⣄⠀⠀⠀⠀⠸⡧⠟⠆⠀⠀⠀⠀⠘⠿⢿⠿⠿⣿⡿⣿⠃⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿
⡾⠃⠀⠀⠀⠀⠀⠀⠀⠀⠘⢦⡈⠂⠀⠑⢄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⢠⣿⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠒⡄⠀⠀⠑⠄⠀⠀⠀⠀⠀⠀⠀⢀⣠⣤⣦⣦⣼⡏⠳⣜⢿⠻⢿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠀⠀⠀⢠⣷⣦⣤⣀⣀⣀⣴⣿⣿⣿⣿⣿⡿⠻⠆⠸⣎⣧⠀⠈⠙⠿⣿⣿⣿⣿⣿⣿⣿⣿⣿
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣄⠀⠀⠀⣸⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠁⣠⡄⠀⣿⢹⡇⢸⡀⠀⠈⠻⢿⣿⣿⣿⣿⣿⣿(13 votes) - This is so much better than other videos and teacheRs explaining(13 votes)
- oiceover] We know that we can find the area of a rectangle by multiplying the base times the height. The area of a rectangle is equal to base times height. In another video, we saw that, if we're looking at the area of a parallelogram, and we also know the length of a base, and we know its height, then the area is still going to be base times height. Now, it's not as obvious when you look at the parallelogram, but in that video, we did a little manipulation of the area. We said, "Hey, let's take this "little section right over here." So we took that little section right over there, and then we move it over to the right-hand side, and just like that, you see that, as long as the base and the height is the same, as this rectangle here, I'm able to construct the same rectangle by moving that area over, and that's why the area of this parallelogram is base times height. I didn't add or take away area, I just shifted area from the left-hand side to the right-hand side to show you that the area of that parallelogram was the same as this area of the rectangle. It's still going to be base times height. So hopefully that convinces you that the area of a parallelogram is base times height, because we're now going to use that to get the intuition for the area of a triangle. So let's look at some triangles here. So that is a triangle, and we're given the base and the height, and we're gonna try to think about what's the area of this triangle going to be, and you can imagine it's going to be dependent on base and height. Well, to think about that, let me copy and paste this triangle. So let me copy, and then let me paste it, and what I'm gonna do is, so now I have two of the triangles, so this is now going to be twice the area, and I'm gonna rotate it around, I'm gonna rotate it around like that, and then add it to the original area, and you see something very interesting is happening. I have now constructed a parallelogram. I have now constructed a parallelogram that has twice the area of our original triangle, 'cause I have two of our original triangles right over here, you saw me do it, I copied and pasted it, and then I flipped it over and I constructed the parallelogram. Now why is this interesting? Well, the area of the entire parallelogram, the area of the entire parallelogram is going to be the length of this base times this height. You also have height written with the "h" upside down over here. It's going to be base times height. That's going to be for the parallelogram, for the entire-- let me draw a parallelogram right over here. That's going to be the area of the entire parallelogram. So what would be the area of our original triangle? What would be the area of our original triangle? Well, we already saw that this area of the parallelogram, it's twice the area of our original triangle. So our original triangle is just going to have half the area. So this area right over here is going to be one half the area of the parallelogram. One half base-- let me do those same colors. One half base times height. One half base times height. And you might say, "OK, maybe it worked for this triangle, "but I wanna see it work for more triangles." And so, to help you there, I've added another triangle right over here, you could do this as an obtuse triangle, this angle right over here is greater than 90 degrees, but I'm gonna do the same trick. We have the base, and then we have the height. Here, you can think of, if you start at this point right over here, and if you drop a ball, the length that the ball goes, if you had a string here, to kind of get to the ground level, you could view this as the ground level right over there, that that's going to be the height, it's not sitting in the triangle like we saw last time, but it's still the height of the triangle. If this was a building of some kind, you'd say, "Well, this is the height." How far off the ground is it? Well, what's the area of this going to be? Well, you can imagine, it's going to be one half base times height. How do we feel good about that? Well, let's do the same magic here. So let me copy and paste this, so I'm gonna copy and then paste it. Whoops, that didn't work. Let me copy, and then paste it. And so, I have two of these triangles now, but I'm gonna flip this one over, so that I can construct a parallelogram. So I'm gonna flip it over, and move it over here, I'm gonna have to rotate it a little bit more. So, I think you get the general idea. So now I have constructed a parallelogram that has twice the area of our original triangle. It has twice the area of our original triangle. And so, if I talked about the area of the entire parallelogram, it would be base times the height of the parallelogram. Base times the height of the parallelogram. But if we're only talking about the area of -- If we're only talking about this area right over here, which is our original triangle, it's going to be half the area of the parallelogram, so it's gonna be one half of that. So our area of our original triangle is one half base times height. So hopefully that makes you feel pretty good about this formula that you will see in geometry, that area of a triangle is one half base times height, while the area of a rectangle or a paralleogram is going to be base times height.
Creative Commons Attribution/Non-Commercial/Share-Alike
Answer AmariM's post “oiceover] We know that we...”
•
Comment on AmariM's post “oiceover] We know that we...”
(2 votes)
Upvote
Downvote
FlagOpens a modal to flag content
blobby blue style avatar for user JAMILETR
JAMILETR
11 days ago
Posted 11 days ago. Direct link to JAMILETR's post “can I go home now?”
can I go home now?
Answer JAMILETR's post “can I go home now?”
•
Comment on JAMILETR's post “can I go home now?”
(1 vote)
Upvote
Downvote
FlagOpens a modal to flag content
blobby green style avatar for user Armando Contreras
Armando Contreras
11 days ago
Posted 11 days ago. Direct link to Armando Contreras's post “- [Voiceover] We know tha...”
- [Voiceover] We know that we can find the area of a rectangle by multiplying the base times the height. The area of a rectangle is equal to base times height. In another video, we saw that, if we're looking at the area of a parallelogram, and we also know the length of a base, and we know its height, then the area is still going to be base times height. Now, it's not as obvious when you look at the parallelogram, but in that video, we did a little manipulation of the area. We said, "Hey, let's take this "little section right over here." So we took that little section right over there, and then we move it over to the right-hand side, and just like that, you see that, as long as the base and the height is the same, as this rectangle here, I'm able to construct the same rectangle by moving that area over, and that's why the area of this parallelogram is base times height. I didn't add or take away area, I just shifted area from the left-hand side to the right-hand side to show you that the area of that parallelogram was the same as this area of the rectangle. It's still going to be base times height. So hopefully that convinces you that the area of a parallelogram is base times height, because we're now going to use that to get the intuition for the area of a triangle. So let's look at some triangles here. So that is a triangle, and we're given the base and the height, and we're gonna try to think about what's the area of this triangle going to be, and you can imagine it's going to be dependent on base and height. Well, to think about that, let me copy and paste this triangle. So let me copy, and then let me paste it, and what I'm gonna do is, so now I have two of the triangles, so this is now going to be twice the area, and I'm gonna rotate it around, I'm gonna rotate it around like that, and then add it to the original area, and you see something very interesting is happening. I have now constructed a parallelogram. I have now constructed a parallelogram that has twice the area of our original triangle, 'cause I have two of our original triangles right over here, you saw me do it, I copied and pasted it, and then I flipped it over and I constructed the parallelogram. Now why is this interesting? Well, the area of the entire parallelogram, the area of the entire parallelogram is going to be the length of this base times this height. You also have height written with the "h" upside down over here. It's going to be base times height. That's going to be for the parallelogram, for the entire-- let me draw a parallelogram right over here. That's going to be the area of the entire parallelogram. So what would be the area of our original triangle? What would be the area of our original triangle? Well, we already saw that this area of the parallelogram, it's twice the area of our original triangle. So our original triangle is just going to have half the area. So this area right over here is going to be one half the area of the parallelogram. One half base-- let me do those same colors. One half base times height. One half base times height. And you might say, "OK, maybe it worked for this triangle, "but I wanna see it work for more triangles." And so, to help you there, I've added another triangle right over here, you could do this as an obtuse triangle, this angle right over here is greater than 90 degrees, but I'm gonna do the same trick. We have the base, and then we have the height. Here, you can think of, if you start at this point right over here, and if you drop a ball, the length that the ball goes, if you had a string here, to kind of get to the ground level, you could view this as the ground level right over there, that that's going to be the height, it's not sitting in the triangle like we saw last time, but it's still the height of the triangle. If this was a building of some kind, you'd say, "Well, this is the height." How far off the ground is it? Well, what's the area of this going to be? Well, you can imagine, it's going to be one half base times height. How do we feel good about that? Well, let's do the same magic here. So let me copy and paste this, so I'm gonna copy and then paste it. Whoops, that didn't work. Let me copy, and then paste it. And so, I have two of these triangles now, but I'm gonna flip this one over, so that I can construct a parallelogram. So I'm gonna flip it over, and move it over here, I'm gonna have to rotate it a little bit more. So, I think you get the general idea. So now I have constructed a parallelogram that has twice the area of our original triangle. It has twice the area of our original triangle. And so, if I talked about the area of the entire parallelogram, it would be base times the height of the parallelogram. Base times the height of the parallelogram. But if we're only talking about the area of -- If we're only talking about this area right over here, which is our original triangle, it's going to be half the area of the parallelogram, so it's gonna be one half of that. So our area of our original triangle is one half base times height. So hopefully that makes you feel pretty good about this formula that you will see in geometry, that area of a triangle is one half base times height, while the area of a rectangle or a paralleogram is going to be base times height.
Answer Armando Contreras's post “- [Voiceover] We know tha...”
•
Comment on Armando Contreras's post “- [Voiceover] We know tha...”
(1 vote)
Upvote
Downvote
FlagOpens a modal to flag content
female robot grace style avatar for user sarra
sarra
a month ago
Posted a month ago. Direct link to sarra's post “is the area of a triangle...”
is the area of a triangle always 1/2 a parallelogram? and does it work with all types of triangles ?
Answer sarra's post “is the area of a triangle...”
•
Comment on sarra's post “is the area of a triangle...”
(4 votes)
Upvote
Downvote
FlagOpens a modal to flag content
primosaur seed style avatar for user Ian Pulizzotto
Ian Pulizzotto
a month ago
Posted a month ago. Direct link to Ian Pulizzotto's post “Yes, for any triangle, th...”
Yes, for any triangle, the area is always half of the area of a parallelogram with the same base and the same height as the triangle.
Have a blessed, wonderful day!
Comment on Ian Pulizzotto's post “Yes, for any triangle, th...”
(5 votes)
Upvote
Downvote
FlagOpens a modal to flag content
blobby green style avatar for user MAXWELLL
MAXWELLL
17 days ago
Posted 17 days ago. Direct link to MAXWELLL's post “why did it take them 6 mi...”
why did it take them 6 mins to explain base times height divided by 2 is the formula?
Answer MAXWELLL's post “why did it take them 6 mi...”
•
Comment on MAXWELLL's post “why did it take them 6 mi...”
(0 votes)
Upvote
Downvote
FlagOpens a modal to flag content
cacteye purple style avatar for user TREBULA
TREBULA
a month ago
Posted a month ago. Direct link to TREBULA's post “problems being a parallel...”
problems being a parallelogram:
everyone confuses you for a tringle
Answer TREBULA's post “problems being a parallel...”
•
Comment on TREBULA's post “problems being a parallel...”
(6 votes)
Upvote
Downvote
FlagOpens a modal to flag content
male robot donald style avatar for user Gauri Nene
Gauri Nene
20 days ago
Posted 20 days ago. Direct link to Gauri Nene's post “Is there another formula.”
Is there another formula.
Answer Gauri Nene's post “Is there another formula.”
•
Comment on Gauri Nene's post “Is there another formula.”
(0 votes)
Upvote
Downvote
FlagOpens a modal to flag content
starky seedling style avatar for user academic_girl
academic_girl
2 months ago
Posted 2 months ago. Direct link to academic_girl's post “This is so much better th...”
This is so much better than other videos and teacheRs explaining
Answer academic_girl's post “This is so much better th...”
•
Comment on academic_girl's post “This is so much better th...”
(13 votes)
Upvote
Downvote
FlagOpens a modal to flag content
Video transcript
- [Voiceover] We know that we can find the area of a rectangle by multiplying the base times the height. The area of a rectangle is equal to base times height. In another video, we saw that, if we're looking at the area of a parallelogram, and we also know the length of a base, and we know its height, then the area is still going to be base times height. Now, it's not as obvious when you look at the parallelogram, but in that video, we did a little manipulation of the area. We said, "Hey, let's take this "little section right over here." So we took that little section right over there, and then we move it over to the right-hand side, and just like that, you see that, as long as the base and the height is the same, as this rectangle here, I'm able to construct the same rectangle by moving that area over, and that's why the area of this parallelogram is base times height. I didn't add or take away area, I just shifted area from the left-hand side to the right-hand side to show you that the area of that parallelogram was the same as this area of the rectangle. It's still going to be base times height. So hopefully that convinces you that the area of a parallelogram is base times height, because we're now going to use that to get the intuition for the area of a triangle. So let's look at some triangles here. So that is a triangle, and we're given the base and the height, and we're gonna try to think about what's the area of this triangle going to be, and you can imagine it's going to be dependent on base and height. Well, to think about that, let me copy and paste this triangle. So let me copy, and then let me paste it, and what I'm gonna do is, so now I have two of the triangles, so this is now going to be twice the area, and I'm gonna rotate it around, I'm gonna rotate it around like that, and then add it to the original area, and you see something very interesting is happening. I have now constructed a parallelogram. I have now constructed a parallelogram that has twice the area of our original triangle, 'cause I have two of our original triangles right over here, you saw me do it, I copied and pasted it, and then I flipped it over and I constructed the parallelogram. Now why is this interesting? Well, the area of the entire parallelogram, the area of the entire parallelogram is going to be the length of this base times this height. You also have height written with the "h" upside down over here. It's going to be base times height. That's going to be for the parallelogram, for the entire-- let me draw a parallelogram right over here. That's going to be the area of the entire parallelogram. So what would be the area of our original triangle? What would be the area of our original triangle? Well, we already saw that this area of the parallelogram, it's twice the area of our original triangle. So our original triangle is just going to have half the area. So this area right over here is going to be one half the area of the parallelogram. One half base-- let me do those same colors. One half base times height. One half base times height. And you might say, "OK, maybe it worked for this triangle, "but I wanna see it work for more triangles." And so, to help you there, I've added another triangle right over here, you could do this as an obtuse triangle, this angle right over here is greater than 90 degrees, but I'm gonna do the same trick. We have the base, and then we have the height. Here, you can think of, if you start at this point right over here, and if you drop a ball, the length that the ball goes, if you had a string here, to kind of get to the ground level, you could view this as the ground level right over there, that that's going to be the height, it's not sitting in the triangle like we saw last time, but it's still the height of the triangle. If this was a building of some kind, you'd say, "Well, this is the height." How far off the ground is it? Well, what's the area of this going to be? Well, you can imagine, it's going to be one half base times height. How do we feel good about that? Well, let's do the same magic here. So let me copy and paste this, so I'm gonna copy and then paste it. Whoops, that didn't work. Let me copy, and then paste it. And so, I have two of these triangles now, but I'm gonna flip this one over, so that I can construct a parallelogram. So I'm gonna flip it over, and move it over here, I'm gonna have to rotate it a little bit more. So, I think you get the general idea. So now I have constructed a parallelogram that has twice the area of our original triangle. It has twice the area of our original triangle. And so, if I talked about the area of the entire parallelogram, it would be base times the height of the parallelogram. Base times the height of the parallelogram. But if we're only talking about the area of -- If we're only talking about this area right over here, which is our original triangle, it's going to be half the area of the parallelogram, so it's gonna be one half of that. So our area of our original triangle is one half base times height. So hopefully that makes you feel pretty good about this formula that you will see in geometry, that area of a triangle is one half base times height, while the area of a rectangle or a paralleogram is going to be base times height.
Creative Commons Attribution/Non-Commercial/Share-Alike
Video on YouTube(1 vote)
- I still don't get it I am bad at math can someone explain this to me?(7 votes)
- Ok, so let's get started with right triangles.
Visualise a right triangle as a half of a rectangle. The hypotenuse is the diagonal of the rectangle. The hypotenuse is the longest side of a triangle. The legs of the triangles are the 2 adjacent sides of the rectangle. Adjacent sides are sides that share a common point. In other words, adjacent sides are side-by-side. The area of a rectangle is length times the breadth, or lb. Now we know our right triangle is half of our rectangle. So the area will be half of that of the rectangle. Therefore, the area is lb/2.
Watch this video where Sal describes the proof of Triangles.
https://www.khanacademy.org/math/geometry-home/geometry-area-perimeter/geometry-area-triangle/v/triangle-area-proofs(11 votes)
- This video has broken down my brain. I was studying in school for 10 years and hadn`t understood why is it 1/2bh, but this video... oh my god(11 votes)
- why is learning important(7 votes)
- Learning is important so that you know what to do. If you hadn't learned how to type or communicate in English, you would not have been able to type that question. Learning is also important, because you usually will not be accepted into college with low grades. College is important because a lot of jobs will accept you if you have gone through college. If you are stuck with a job that you do not like or does not pay you enough, it is very difficult to get out of it.(7 votes)
Video transcript
- [Voiceover] We know that we can find the area of a rectangle by multiplying the base times the height. The area of a rectangle is
equal to base times height. In another video, we saw that, if we're looking at the
area of a parallelogram, and we also know the length of a base, and we know its height, then the area is still going to be base times height. Now, it's not as obvious when you look at the parallelogram, but in that video, we did a little manipulation of the area. We said, "Hey, let's take this "little section right over here." So we took that little
section right over there, and then we move it over
to the right-hand side, and just like that, you see that, as long as the base and
the height is the same, as this rectangle here,
I'm able to construct the same rectangle by
moving that area over, and that's why the area
of this parallelogram is base times height. I didn't add or take away
area, I just shifted area from the left-hand side
to the right-hand side to show you that the area
of that parallelogram was the same as this
area of the rectangle. It's still going to be base times height. So hopefully that convinces you that the area of a parallelogram
is base times height, because we're now going to use that to get the intuition for
the area of a triangle. So let's look at some triangles here. So that is a triangle, and we're given the base and the height, and we're gonna try to think about what's the area of this
triangle going to be, and you can imagine it's going to be dependent on base and height. Well, to think about that, let me copy and paste this triangle. So let me copy, and then let me paste it, and what I'm gonna do is, so now I have two of the triangles, so this is now going to be twice the area, and I'm gonna rotate it around, I'm gonna rotate it around like that, and then add it to the
original area, and you see something very interesting is happening. I have now constructed a parallelogram. I have now constructed a parallelogram that has twice the area
of our original triangle, 'cause I have two of
our original triangles right over here, you saw me do it, I copied and pasted it,
and then I flipped it over and I constructed the parallelogram. Now why is this interesting? Well, the area of the
entire parallelogram, the area of the entire parallelogram is going to be the length of
this base times this height. You also have height written with the "h" upside down over here. It's going to be base times height. That's going to be for the
parallelogram, for the entire-- let me draw a parallelogram
right over here. That's going to be the area
of the entire parallelogram. So what would be the area
of our original triangle? What would be the area
of our original triangle? Well, we already saw that this
area of the parallelogram, it's twice the area of
our original triangle. So our original triangle is just going to have half the area. So this area right over
here is going to be one half the area of the parallelogram. One half base-- let me
do those same colors. One half base times height. One half base times height. And you might say, "OK, maybe
it worked for this triangle, "but I wanna see it work
for more triangles." And so, to help you there, I've added another
triangle right over here, you could do this as an obtuse triangle, this angle right over here
is greater than 90 degrees, but I'm gonna do the same trick. We have the base, and
then we have the height. Here, you can think of, if you start at this
point right over here, and if you drop a ball, the length that the ball goes,
if you had a string here, to kind of get to the ground level, you could view this as the ground level right over there, that that's
going to be the height, it's not sitting in the
triangle like we saw last time, but it's still the height of the triangle. If this was a building of some kind, you'd say, "Well, this is the height." How far off the ground is it? Well, what's the area of this going to be? Well, you can imagine, it's going to be one
half base times height. How do we feel good about that? Well, let's do the same magic here. So let me copy and paste this, so I'm gonna copy and then paste it. Whoops, that didn't work. Let me copy, and then paste it. And so, I have two of these triangles now, but I'm gonna flip this one over, so that I can construct a parallelogram. So I'm gonna flip it over,
and move it over here, I'm gonna have to rotate
it a little bit more. So, I think you get the general idea. So now I have constructed a parallelogram that has twice the area
of our original triangle. It has twice the area of
our original triangle. And so, if I talked about the area of the entire parallelogram, it would be base times the
height of the parallelogram. Base times the height
of the parallelogram. But if we're only talking
about the area of -- If we're only talking about this area right over here, which
is our original triangle, it's going to be half the
area of the parallelogram, so it's gonna be one half of that. So our area of our original triangle is one half base times height. So hopefully that makes
you feel pretty good about this formula that
you will see in geometry, that area of a triangle is
one half base times height, while the area of a
rectangle or a paralleogram is going to be base times height.