Main content

### Course: 3rd grade > Unit 6

Lesson 3: Equivalent fractions- Equivalent fractions with visuals
- Equivalent fraction models
- Equivalent fraction models
- Equivalent fraction visually
- Creating equivalent fractions
- Equivalent fractions on the number line
- Equivalent fractions
- Equivalent fractions and comparing fractions: FAQ

© 2024 Khan AcademyTerms of usePrivacy PolicyCookie Notice

# Equivalent fractions and comparing fractions: FAQ

Frequently asked questions about equivalent fractions and comparing fractions.

**What are equivalent fractions?**

Equivalent fractions are fractions that look different but represent the same amount. For example, $\frac{1}{2}$ , $\frac{2}{4}$ , and $\frac{3}{6}$ are all equivalent fractions.

**How can we find equivalent fractions?**

We can use fraction models or number lines to find equivalent fractions.

For example, ${{\displaystyle \frac{6}{8}}}$ is at the same location on the number line as ${{\displaystyle \frac{3}{4}}}$ .

**How can we compare fractions with the same numerator?**

When comparing fractions with the same numerator, the fraction with the smaller denominator will be larger. For example, if we compare $\frac{1}{2}$ and $\frac{1}{4}$ , we can see that $\frac{1}{2}$ is larger because the denominator is smaller (so the single "part" is larger).

**How can we compare fractions with the same denominator?**

When comparing fractions with the same denominator, the fraction with the larger numerator will be larger. For example, if we compare $\frac{2}{4}$ and $\frac{3}{4}$ , we can see that $\frac{3}{4}$ is larger because the numerator is larger (so there are more "parts" in the fraction).

**Where do we use comparing fractions and equivalent fractions in the real world?**

There are many potential real-world applications for comparing and working with equivalent fractions. For example, in cooking, we might need to use equivalent fractions in order to follow a recipe accurately if we don't have the right measuring cup on hand. We might also need to compare fractional measurements when sewing or doing carpentry work in order to cut a piece of material to the right size.

## Want to join the conversation?

- Could we divide with equivalent fractions?🤔(21 votes)
- Yes, you can divide equivalent fractions. But see, if the fractions have the same value, then divide one for another will always result in 1.

Let's make this clear with an exemple:

Let's divide 2/3 for 6/9, which are equivalent fractions.

2/3 ÷ 6/9 = 2/3 × 9/6 = 18/18 = 1

or

6/9 ÷ 2/3 = 6/9 × 3/2 = 18/18 = 1

We always get 1 with a division with equivalent fractions because we are actually dividing a number for the same number.(23 votes)

- Why for some fractions the top can be more than the bottom(10 votes)
- That is called an improper fraction. An improper fraction is when the numerator is more than one whole.(9 votes)

- What is the 1/3 equal?(6 votes)
- 1/3 can equal lots of things, such as 2/6, 3/9, and many other things, because it is the most simplified form of one third.(9 votes)

- hey,would 3/6 be the same as 1/4 is to 2/6 is?(6 votes)
- no, 3/6 is not the same as 1/4 or 2/6 if you want it to be equal we need the pattern like this 1/2, 2/4, 4/8(2 votes)

- can we multiply with equivalent fractions(6 votes)
- what if the denominator and the numerator are not the same(4 votes)
- can they break it down easyer?(5 votes)
- what is the highest equivalent fraction you could make?(4 votes)
- what is the highest number you could use in any fraction?(4 votes)
- can we add doing this(3 votes)
- bro stop spaming(3 votes)