If you're seeing this message, it means we're having trouble loading external resources on our website.

If you're behind a web filter, please make sure that the domains *.kastatic.org and *.kasandbox.org are unblocked.

Main content

Volume formulas review

Review the formulas for the volume of prisms, cylinders, pyramids, cones, and spheres.
It may seem at first like there are lots of volume formulas, but many of the formulas share a common structure.

Prisms and prism-like figures

Volumeprism=(base area)(height)
We always measure the height of a prism perpendicularly to the plane of its base. That's true even when a prism is on its side or when it tilts (an oblique prism).

Rectangular prisms

Often, we first learn about volume using rectangular prisms (specifically right rectangular prisms), such as by building the prism out of cubes.
Note that any face of a rectangular prism could be its base, as long as we measure the height of the prism perpendicularly to that face.
Volumerectangular prism=(Arearectangle)(height)=((rectangle base)(rectangle height))(prism height)=lwh

Triangular prisms

A triangular prism has a base shaped like a triangle.
Volumetriangular prism=(Areatriangle)(height)=(12(triangle base)(triangle height))(prism height)=12bh


A circular cylinder is a prism-like figure that has a base shaped like a circle.
Volumecircular cylinder=(Areacircle)(height)=(π(radius)2)(height)=πr2h

Oblique prisms

In oblique prisms, the bases are in parallel planes,
We still calculate the volume in exactly the same way because of Cavalieri's principle.
Which expression gives the volume of the oblique rectangular prism?
Choose 1 answer:

Pyramids and pyramid-like figures

Volumepyramid=13(base area)(height)
We also measure the height of a pyramid perpendicularly to the plane of its base. Because of Cavalieri's principle, the same volume formula works for right and oblique pyramid-like figures.

Rectangle-based pyramids

A rectangle-based pyramid has a base shaped like a rectangle.
Volumerectangle-based pyramid=13(Arearectangle)(height)=13((rectangle base)(rectangle height))(pyramid height)=13lwh


A circular cone is a pyramid-like figure that has a base shaped like a circle.
Volumecircular cone=13(Areacircle)(height)=13(π(radius)2)(height)=13πr2h



Want to join the conversation?