If you're seeing this message, it means we're having trouble loading external resources on our website.

If you're behind a web filter, please make sure that the domains *.kastatic.org and *.kasandbox.org are unblocked.

## High school geometry

### Course: High school geometry>Unit 1

Lesson 2: Introduction to rigid transformations

# Rotations intro

Learn what rotations are and how to perform them in our interactive widget.

## What is a rotation?

In the figure below, one copy of the trapezoid is rotating around the point.
In geometry, rotations make things turn in a cycle around a definite center point. Notice that the distance of each rotated point from the center remains the same. Only the relative position changes.
In the figure below, one copy of the octagon is rotated 22, degree around the point.
Notice how the octagon's sides change direction, but the general shape remains the same. Rotations don't distort shapes, they just whirl them around. Furthermore, note that the vertex that is the center of the rotation does not move at all.
Now that we've got a basic understanding of what rotations are, let's learn how to use them in a more exact manner.

## The angle of rotation

Every rotation is defined by two important parameters: the center of the rotation—we already went over that—and the angle of the rotation. The angle determines by how much we rotate the plane about the center.
For example, we can tell that start color #ca337c, A, prime, end color #ca337c is the result of rotating start color #11accd, A, end color #11accd about P, but that's not exact enough.
In order to define the measure of the rotation, we look at the angle that's created between the segments start overline, P, A, end overline and start overline, P, A, prime, end overline.
This way, we can say that start color #ca337c, A, prime, end color #ca337c is the result of rotating start color #11accd, A, end color #11accd by 45, degree about P.

### Clockwise and counterclockwise rotations

This is how we number the quadrants of the coordinate plane.
The quadrant numbers increase as we move counterclockwise. We measure angles the same way to be consistent.
Conventionally, positive angle measures describe counterclockwise rotations. If we want to describe a clockwise rotation, we use negative angle measures.
For example, here's the result of rotating a point about P by minus, 30, degree.

### Pre-images and images

For any transformation, we have the pre-image figure, which is the figure we are performing the transformation upon, and the image figure, which is the result of the transformation. For example, in our rotation, the pre-image point was start color #11accd, A, end color #11accd, and the image point was start color #ca337c, A, prime, end color #ca337c.
Note that we indicated the image by start color #ca337c, A, prime, end color #ca337c—pronounced, "A prime". It is common, when working with transformations, to use the same letter for the image and the pre-image; simply add the prime suffix to the image.

## Let's try some practice problems

Problem 1
• Current
Plot the image of point A after a minus, 120, degree rotation about P.

### Challenge problems

Challenge problem 1
• Current
start color #ca337c, R, end color #ca337c, start color #ca337c, S, end color #ca337c, and start color #ca337c, T, end color #ca337c are all images of start color #11accd, Q, end color #11accd under different rotations.
Match each image with its appropriate rotation.