Main content

## Get ready for 8th grade

### Unit 4: Lesson 2

Polygons on the coordinate plane- Drawing a quadrilateral on the coordinate plane example
- Drawing polygons with coordinates
- Area of a parallelogram on the coordinate plane
- Area and perimeter on the coordinate plane
- Coordinates of a missing vertex
- Example of shapes on a coordinate plane
- Dimensions of a rectangle from coordinates
- Coordinates of rectangle example
- Quadrilateral problems on the coordinate plane
- Quadrilateral problems on the coordinate plane
- Parallelogram on the coordinate plane

© 2022 Khan AcademyTerms of usePrivacy PolicyCookie Notice

# Area of a parallelogram on the coordinate plane

CCSS.Math:

Learn how to find the area of a parallelogram on the coordinate plane.

## Video transcript

- [Voiceover] Let's see if we can find the area of this parallelogram, and I encourage you to pause the video and see if you can figure
it out on your own. Well, we just have to remind ourselves that the area of a parallelogram is just going to be the base -- let me do this in different colors -- it's going to be the base
of the parallelogram, so I want to do that in a different color, so let me write: the base of the parallelogram times the height of the parallelogram, times the height of the parallelogram. Area is equal to base times height. So, what could we consider to be the base of this parallelogram? Well, we could imagine it
to be one of these sides. So, we could go from here, and so, I could say... well, I could consider
this to be the base. So, what's the length of that base? Well, we're just going in
the vertical direction. We go from "y" equals five, to "y" is equal to negative seven, so this has length 12. We have five above the x-axis,
and seven below the x-axis, adding up to 12. Or, you could count it: One, two, three, four, five, six, seven, eight, nine, ten, 11, 12. So, this is our base, and we could say that base is equal to 12. And, now, what could
we view as our height? Well, we could view this dimension, right over here, as our height. And, what is that going to be? Well, you can see very clearly that the height is equal to four. And, it might be a
little counter-intuitive, 'cause normally, when
you're talking about height, you're used to thinking
about how high something is, but you could imagine rotating this around so that the base is laying flat, and then the height is the height, in the traditional sense of the word. But, we could say "h" is equal to four, and now, it's pretty straightforward. Our area is going to be equal to 12, the length of our base times our height, times four, times four, which is clearly just 48. 48, whatever, square, 48 square units.