If you're seeing this message, it means we're having trouble loading external resources on our website.

If you're behind a web filter, please make sure that the domains *.kastatic.org and *.kasandbox.org are unblocked.

## Get ready for Algebra 2

### Course: Get ready for Algebra 2>Unit 4

Lesson 9: Intro to inverse functions

# Graphing the inverse of a linear function

Sal is given a line segment on the coordinate plane, and he graphs the inverse of the function represented by that segment.

## Video transcript

This right over here is our understanding inverses of functions exercise on Khan Academy. It's a good exercise to make sure you understand inverses of functions. It's an interactive one where we can move this line around and it tells us 'the graph of h(x) is the green', so that's this dotted green line, 'the dashed line segment shown below'. So that's this. 'Drag the endpoints of the segment below to graph h inverse of (x). There's a couple of ways to tackle it. Perhaps the simplest one is we say, okay, look, h(x), what does h(x) map from and to? So h(x), this point shows that h(x), if you input -8 into h of (x), h of -8 is 1, so it's mapping from -8 to 1. Well, the inverse of that, then, should map from 1 to -8. So let's put that point on the graph, and let's go on the other end. On the other end of h of x, we see that when you input 3 into h of x, when x is equal to 3, h of x is equal to -4. So this point shows us that it's mapping from 3 to -4. So the inverse of that would map from -4 to 3. If you input -4 it should output 3. Since we took the two end points of this line and found the inverse mapping of it, what I have just done here is that I have graphed the inverse. Another way to think about the inverse is if you were to draw the line y = x, these things should be reflections around the line y =x because one way to think about it is, you're swapping the xs for the ys. If you were to draw the line y = x, if you flipped it around, the line y = x, the green line, you would actually get the old line. This would flip over there and this would flip over there. But either way, we're done. We have graphed h inverse of x.