If you're seeing this message, it means we're having trouble loading external resources on our website.

If you're behind a web filter, please make sure that the domains *.kastatic.org and *.kasandbox.org are unblocked.

Main content

Borromean onion rings

Borromean Onion Rings, the perfect way to top your Green Bean Matherole! Borromean onion rings were invented by special guest Marc ten Bosch (http://marctenbosch.com). Also shown are gelatinous cranberry cylinder, bread spheres and butter prism, mathed potatoes, apple pie, and pumpkin tau. Mathed Potatoes: http://youtu.be/F5RyVWI4Onk Green Bean Matherole: http://youtu.be/XwIs1nlDQ2I Turduckenen-duckenen: http://youtu.be/pjrI91J6jOw. Created by Vi Hart.

Want to join the conversation?

Video transcript

So say your vector field green bean casserole is in the oven, and now it's time to think about a nice, crispy onion topping. Normal people might just use, for instance, French's French fried onions in a can, put super awesome people use a real French person, and real fresh onions, to make their own fresh onion toroids. And they fry free linked with the Brunnian property to get Borromean onion rings. The Borromean rings show up in many forms, they come flat and in 3D, round, rectangly, triangly. But, the important thing is not the way the rings appear, but the way they are connected to each other. The thing about the Borromean rings is that no two of the rings are actually linked together. Ignore the pink and look at just the green and brown. They're sitting on top of each other, not linked. And if you just look at the green and pink, or pink and brown, it's the same thing. And yet, all three together are linked inseparably. So to make your Borromean rings out of onion rings, you will have to cut one of your rings and then fasten it back together with a toothpick or something, which can be removed after frying. Or you can use the fourth dimension. And luckily I have a four-dimensional guest to help me out. If you're stuck in three dimensions, you can think of it like this. Here I've got an outside ring and an inside ring. Now, the third ring which I have cut, is going to go outside of the outside ring, but inside of the inside ring. Each ring is wholly out of, and wholly inside of the other two rings so that no two are linked, but all three are. You can also think of laying two on each other flat, one on top of the other. And then having the third weave through them, so that it goes over the one on top, and under the one on bottom. The result can be made to be flatter or more spherical, in some you can see the relationship that Borromean rings have with braids. Sure the orange, yellow, and red ribbons are all twisted together, but no two strands are twisted together. If I pull out the orange one, the other two fall apart. Some people and cultures and stuff think of this togetherness property as a metaphor for unity. So when you eat Borromean onion rings, you get to feel all deep and symbolic. But don't forget to save enough to put on top of your green bean matherole. And there we go. At this point I've got a gelatinous cranberry cylinder, bread spheres with butter prism, masked potatoes, a vector field green bean matherole with Borromean onion rings, apple pie, and pumpkin tau. All I need is a double helix cut ham, and of course, the crowning glory of this feast which I will tell you about next time.