If you're seeing this message, it means we're having trouble loading external resources on our website.

If you're behind a web filter, please make sure that the domains *.kastatic.org and *.kasandbox.org are unblocked.

## Integrated math 1

### Course: Integrated math 1>Unit 2

Lesson 1: Linear equations with variables on both sides

# Equation with the variable in the denominator

Sal solves the equation 7 - 10/x = 2 + 15/x. Created by Sal Khan.

## Video transcript

So I have the equation 7 minus 10/x is equal to 2 plus 15/x. And so this isn't the type of equation that you might think that you're used to solving. But I'll give you a few moments to see if you can solve it on your own. Well, what we'll see is we can do a quick multiplication of both sides to actually simplify this to a form that we are more used to looking at. So what's probably bothering you, because it's bothering me, is these x's that we have in the denominators right over here. We're like, well, how do we deal with that? Well, whenever we see an x in the denominator, the temptation is to multiply it by x. But we can't just multiply one of the terms by x. We have to multiply the entire side by x. So we could multiply this entire side by x. But we can't just multiply the left-hand side by x. We'd also want to multiply the right-hand side by x. And so what will that give us? Well, we distribute the x. We get x times 7 is 7x. And then x times negative 10/x, well, that's just going to be negative 10. So you get negative 10 right over there. So the left-hand side simplifies to 7x minus 10. And then your right-hand side, once again, distribute the x. x times 2 is 2x. x times 15/x, well, x times something over x is just going to be the something. x times 15/x is just going to be 15-- plus 15. So now we've simplified this to a linear equation. We have the variable on both sides. So we just have to do some of the techniques that we already know. So the first thing that I like to do is maybe get all my x's on the left-hand side. So I want to get rid of this 2x right over here. So I subtract 2x from the right-hand side. Now, and I always remind you, I can't do that just to the right-hand side. If I did it just to the right-hand side, it wouldn't be an equality anymore. You have to do that to the left-hand side as well. And so we are left with-- let me get that pink color again. On the left-hand side, 7x, 7 of something minus 2 of something, well, you're going to have 5 of that something, minus 10. These two x's negate each other. And you're left with equals 15. Now we can get rid of this negative 10 by adding 10 to both sides. You know, I like that green color when I do stuff to both sides. So I can add 10 to both sides. And I'm left with 5x-- these negate each other-- is equal to 25. And this is the home stretch. You see where this is going. We can divide both sides by 5. And we are left with x is equal to 5. Now let's verify that this actually worked. So let's go back to the original equation. We have 7 minus 10/5. This needs to be equal to-- I'm just taking our 5 and substituting it back here. This needs to be equal to 2 plus 15/5. So this is 7 minus 10/5. This is just 2. It needs to be equal to 2 plus 15/5, which is just 3. So 2 plus 3, 7 minus 2 is 5, 2 plus 3 is 5, 5 is indeed equal to 5. And we are done.