If you're seeing this message, it means we're having trouble loading external resources on our website.

If you're behind a web filter, please make sure that the domains *.kastatic.org and *.kasandbox.org are unblocked.

Main content

Converting a complex number from polar to rectangular form

Given a complex number in polar form, we can convert that number to rectangular form and plot it on the complex plane. Created by Sal Khan.

Want to join the conversation?

  • aqualine ultimate style avatar for user Simum
    What is the difference between a modulus and a magnitude?
    (3 votes)
    Default Khan Academy avatar avatar for user
  • aqualine ultimate style avatar for user birajaryal52
    why does the magnitude (r) have to be the points in the X-axis? Is it because a positive 4 was only available in the x-axis in the 4th quadrant or is r always supposed be be the x-axis?
    (2 votes)
    Default Khan Academy avatar avatar for user
    • leaf green style avatar for user Tanner P
      We use both the real and imaginary components to calculate the magnitude. The formula is: sqrt(a^2+b^2) for a+bi. Notice that it looks like the Pythagorean theorem. That’s because it is the Pythagorean theorem being applied to find a distance.
      (1 vote)
  • blobby green style avatar for user lucyredman2
    Hey, so in one of the exercises, part of the answer to a question, is pi/3, when asking to solve for italics_arctan(-5squareroot15/-5squareroot5)_italics but when I put both numbers into my calculator, they are each different. My calculator was in radian mode. Does anyone know whats going on? Thanks
    (1 vote)
    Default Khan Academy avatar avatar for user
  • blobby green style avatar for user YeetCafe
    I'm getting the process right but always fumble at the end because I don't understand how something like 6cos(5pi/4) turns into -3sqrt2. I understand how on a unit circle cos(5pi/4) is -sqrt2/2, I understand how to get a calculator answer. I just can't get the answer using the format the practice problems want. Are there any videos to watch on this? I don't know how to explain what I don't understand to google.
    (1 vote)
    Default Khan Academy avatar avatar for user
  • blobby green style avatar for user katyroberts1216
    say you have the form 6(cos210degrees +i SIN210 degrees) what would that be in standard form
    (1 vote)
    Default Khan Academy avatar avatar for user

Video transcript

- [Instructor] We are told, consider the complex number Z, which is equal to the square root of 17 times cosine of 346 degrees plus I sine of 346 degrees. And they ask us to plot Z in the complex plane below. If necessary round the points coordinates to the nearest integer. So, I encourage you to pause this video and at least think about where we would likely plot this complex number. All right. Now let's work through it together. So when you look at it like this, you can see that what's being attempted is a conversion from polar form to rectangular form. And if we're thinking about polar form, we can think about the angle of this complex number, which is clearly 346 degrees. And so, 346 degrees is about 14 degrees short of a full circle. So, it would get us probably something around there. And then we also see what the magnitude or the modulus of the complex number is right over here. Square root of 17. Square root of 17 is a little bit more than four 'cause four squared is 16. So if we go in this direction, let's see, that's gonna be about one, two, three, four. We're gonna go right about there. So, if I were to just guess where this is going to put us, it's going to put us right around here, right around four minus one I. But let's actually (indistinct) get a calculator out and see if this evaluates to roughly four minus one I. So for the real part, let's go 346 degrees. And we're gonna take the cosine of it. And then we're gonna multiply that times the square root of 17. So times 17 square root, a little over four, which is equal to that. Actually, yes. The real part does look almost exactly four. Especially, if we are rounding to the nearest integer. It's a little bit more than four. And now let's do the imaginary part. So we have 346 degrees. And we're gonna take the sine of it. And we're going to multiply that times the square root of 17 times 17 square root, which is equal to, yep. If we were round to the nearest integer, it's about negative one. So, we get to this point right over here, which is approximately four minus I. And we are done.