If you're seeing this message, it means we're having trouble loading external resources on our website.

If you're behind a web filter, please make sure that the domains *.kastatic.org and *.kasandbox.org are unblocked.

Main content

General multiplication rule example: independent events

We can use the general multiplication rule to find the probability that two events both occur when the events are independent. Created by Sal Khan.

Want to join the conversation?

  • old spice man green style avatar for user Cal
    I am curious why we cannot answer the question like the following.

    The probability of getting silk on the first spin is 1/6.
    The probability of getting silk on the second spin is 1/6.
    So the probability that Doug or Maya will get silk is 2/6, or 1/3.

    So then the probability of neither of them getting silk must be the inverse of this or 2/3, or 0.66666666666?

    However the probability obtained by simply multiplying 5/6(5/6) is 25/36 or 0.6944444444444. Almost the same but not exactly.

    So, it seems that we can't simply inverse the probability of the positive event to get the negative event? Why not?
    (10 votes)
    Default Khan Academy avatar avatar for user
    • primosaur seed style avatar for user Ian Pulizzotto
      Interesting question!

      “Inversing” the “positive” event to get the “negative” event is not the mistake. Instead, the mistake is assuming that the probability of the “positive” event of either Doug or Maya getting silk is 1/6 + 1/6. This is incorrect because these two events of silk for Doug and silk for Maya could both occur (they are not mutually exclusive). So this calculation counts twice, instead of once, the probability that both events occur. So we must correct this by subtracting the probability that both occur, which is 1/6 * 1/6 = 1/36.

      So the probability of the “positive” event is 1/6 + 1/6 - 1/36 = 11/36. Then the probability of the “negative” event is indeed 1 - 11/36 = 25/36, which matches 5/6 * 5/6.

      Have a blessed, wonderful Christmas!
      (27 votes)
  • leaf green style avatar for user neetikanakul
    Probability that Maya and Doug both get silk should be 1/6 x 1/6 = 1/36.
    The probability that they both don't get silk is 25/36.
    Shouldn't probability that they both get silk and they both don't get silk be 1 but 1/36 + 25/36 is not equal to 1. Please clarify.
    (1 vote)
    Default Khan Academy avatar avatar for user
    • starky ultimate style avatar for user KLaudano
      They do not add up to 1 because there are other possibilities you have not taken into account. Maya could get silk and Doug does not, which is 1/6 x 5/6 = 5/36. Doug could get silk and Maya does not, which is also 1/6 x 5/6 = 5/36.

      probability that neither gets silk + probability that only Maya gets silk + probability that only Doug gets silk + probability that both get silk
      = 25/36 + 5/36 + 5/36 + 1/36
      = 36/36
      = 1
      (15 votes)
  • spunky sam green style avatar for user Toby
    Why is the second draw not 4/5 assuming silk was not drawn in the first draw? That is, why is one of the options not taken off the wheel after the first spin? The question isn’t very clear that both could draw the same material.
    (5 votes)
    Default Khan Academy avatar avatar for user
    • duskpin ultimate style avatar for user Renz
      The problem did not indicate that the option can be taken off the wheel after Maya's turn. If that was the case then Doug's turn would be considered as dependent to the 1st event (ie. Maya's turn) as the wheel has been altered. For the purpose of this problem, it is important that the wheel is fair and unaltered in the sequence of events.
      (2 votes)
  • blobby green style avatar for user Ericsson
    I'm curious won't Doug have total options of materials = 5, since Maya already chose one(Not silk). So won't it be 5/6 multiply by 4/5, which results in 2/3?
    (3 votes)
    Default Khan Academy avatar avatar for user
  • blobby green style avatar for user mohamediaka44
    why the condition P(A).P(B/A), is just equal of P(B) is it because the events are dependant or independent?
    (3 votes)
    Default Khan Academy avatar avatar for user
  • stelly yellow style avatar for user Jalena Crawford
    What happens if the probability is both theoretical and experimental?
    (2 votes)
    Default Khan Academy avatar avatar for user
  • blobby green style avatar for user katrina
    what does it mean by generation of multiplication
    (2 votes)
    Default Khan Academy avatar avatar for user
  • male robot hal style avatar for user Saubir21
    If this were dependent so that when a person got an outcome, it could not be used again, how would the expression be written?
    (2 votes)
    Default Khan Academy avatar avatar for user
    • leaf green style avatar for user cossine
      What you are referring is known as hypergeometric distribution or the generalisation which is multihypergeometric distribution.

      Assuming you have understood binomial distribution you should be able to easily understand it. The probability is given by:

      probability = num_events * prob_of_single_event

      This works because probability of each event given they have have same composition is the same. Let R be red balls and B be blue balls. The balls selected without replacement. Then P(RRRBB) = P(RBRBR) since each event has 3 R's and 2 B's.
      (2 votes)

Video transcript

- [Instructor] We're told that Maya and Doug are finalists in a crafting competition. For the final round, each of them spin a wheel to determine what star material must be in their craft. Maya and Doug both want to get silk as their star material. Maya will spin first, followed by Doug. What is the probability that neither contestant gets silk? Pause this video and think through this on your own before we work through this together. All right, so first let's think about what they're asking. They want to figure out the probability that neither gets silk, so I'm gonna write this in shorthand. So I'm going to use MNS for Maya no silk. And we're also thinking about Doug not being able to pick silk. So Maya no silk and Doug no silk. So we know that this could be viewed as the probability that Maya doesn't get silk. She, after all does get to spin this wheel first, and then we can multiply that by the probability that Doug doesn't get silk, Doug no silk, given that Maya did not get silk. Maya no silk. Now it's important to think about whether Doug's probability is independent or dependent on whether Maya got silk or not. So let's remember Maya will spin first, but it's not like if she picks silk, that somehow silk is taken out of the running. In fact, no matter what she picks, it's not taken out of the running. Doug will then spin it again. And so these are really two independent events, and so the probability that Doug doesn't get silk given that Maya doesn't get silk, this is going to be the same thing as the probability that just Doug doesn't get silk. It doesn't matter what happens to Maya. And so what are each of these? Well, this is all going to be equal to the probability that Maya does not get silk. There's six pieces or six options of this wheel right over here. Five of them entail her not getting silk on her spin. So five over six. And then similarly, when Doug goes to spin this wheel there are six possibilities. Five of them are showing that he does not get silk, Doug no silk. So times 5/6, which is of course going to be equal to 25/36, and we're done.