If you're seeing this message, it means we're having trouble loading external resources on our website.

If you're behind a web filter, please make sure that the domains *.kastatic.org and *.kasandbox.org are unblocked.

Main content

Example: All the ways you can flip a coin

Manually going through the combinatorics to determine the probability of an event occuring. Created by Sal Khan and Monterey Institute for Technology and Education.

Want to join the conversation?

  • leaf green style avatar for user chinmay.hundekari
    Can you solve this without listing down all the possible scenarios(HHH,HHT,HTH...)
    (28 votes)
    Default Khan Academy avatar avatar for user
  • leaf red style avatar for user Madeline P.
    Just curious, I'm wondering what is the probability that a coin fall on the edge. A coin has two faces(heads and tails), with a probability of 50% for each face, but what is the probability that is does not fall on any of it's faces but on it's edge?
    (7 votes)
    Default Khan Academy avatar avatar for user
  • old spice man green style avatar for user Abu Khan
    What if we have 20 tosses?? We cant possibly draw every one of them out, and then count exactly two heads??
    (6 votes)
    Default Khan Academy avatar avatar for user
    • leafers tree style avatar for user Dev Preston
      I'd do it like this:
      Total possible outcomes is 2^20
      - That's 2 possible outcomes per throw, times itself 20 times because it happens 20 times over

      Total outcomes with exactly 2 heads - I imagine all the ways that I could definitely throw exactly 2 heads. First I think of if I threw a head the very first throw - there would be the 19 other possible throws in which I could throw the second head, so 19 ways to throw a head first throw plus just one other head in that session.

      Then I think of the ways I could throw exactly 2 heads if my first head was on the 2nd throw - there would be 18 throws left and my second head could fall in any one of those, so 18 ways to throw exactly 2 heads with the first head on the 2nd throw.

      Pretty soon we see a pattern. If the first head falls on the 3rd throw, there are 17 ways to get exactly 2 heads. From the 4th throw, 16 ways. Right down to the first head falling on the 19th throw, when the 20th throw must also be a head, so only one way there.

      This logic gives you 19 ways + 18 + 17 +... + 2 + 1 = number of ways to throw exactly 2 heads in 20 throws.

      Now I happen to know a neat little trick to work out 19+18+17+...+2+1, just ask if you want to know it. Or you can add it all up on a calculator. Either way, the answer is 190 possible ways to throw exactly 2 heads.

      So the probability is 190/(2^20)
      = 190/1048576
      = 0.000181198...
      = 0.018%

      Getting pretty close to impossible!
      (9 votes)
  • piceratops ultimate style avatar for user Steven Grigsby
    Why do you count THH, HTH, and HHT as 3 separate outcomes?
    (4 votes)
    Default Khan Academy avatar avatar for user
    • female robot ada style avatar for user Candicane
      They are different outcomes because they are not in the same order. If there were different colored cookies in a box and your grandma picked three out without you looking and put them in a specific order, there could be a red cookie, a blue cookie, and a green cookie in that order. But if the order was blue, red, and green, that would be a totally different outcome despite the fact that they're still the same colors. Same thing goes with coins.
      (9 votes)
  • marcimus pink style avatar for user HHoney
    are there any simpler ways of doing probability???
    (3 votes)
    Default Khan Academy avatar avatar for user
    • male robot hal style avatar for user Isaac
      Yes. Before solving a probability problem, first ask yourself whether events are independent or not. If they are, then we are in good shape. what we need to is calculating the possible outcome of each experiment, and multiply by each other. In this example, we have three experiments:
      First experiment : 2 outcomes (H or T)
      Second experiment : 2 outcomes (H or T)
      Third experiment : 2 outcomes (H or T)
      Number of all the possible scenarios : 2 * 2 * 2 (or a quick observation here is that when all the experiments are the same, then you can use power, instead of multiply, 2 * 2 * 2 = 2^3)
      (4 votes)
  • hopper cool style avatar for user BoMAN
    When Sal was listing the possible outcomes, he wrote THH and HHT as different outcomes. Aren't they the same? From my understanding, it doesn't matter what order I get those two heads, just so long as I get the two heads. So why are they counted as different outcomes? Thanks in advance.
    (4 votes)
    Default Khan Academy avatar avatar for user
    • leaf blue style avatar for user FlameFlight
      Well in this specific problem he is taking into account that order matters. The order might matter depending on the situation but the situation. Lets say that the we are playing a game and that you picked heads and I picked tails. Then lets say the first flip is worth 3 points so whoever gets that gets 3 points and then the second flip is 2 and the last is 1, then order would matter.
      (1 vote)
  • starky ultimate style avatar for user Leo Webb
    Why do you have to draw out the possibilities?
    Is there some kinda program that can help you with that?
    (3 votes)
    Default Khan Academy avatar avatar for user
    • piceratops ultimate style avatar for user Jimmy
      Since each coin has 2 possibilities, head or tails, we can do 2*2*2, since there are 3 coins, to find the total number of possibilities. Since there needs to be 2 heads, and there is 3 coins, 2 of the 3 coins have to be heads, and that leads us to C(3,2), which is 3. So that means there are 3 possibilities that fulfill the requierment. The answer is then 3/8.
      (2 votes)
  • female robot grace style avatar for user Laura Simpson
    How can you call it exactly two heads, when you have an additional coin flip to count and whatever that flip is, it can no longer be called "exactly" two heads. Is two heads plus something else exactly two heads? I think the probability is zero of getting exactly two heads, because you have three coins.
    (2 votes)
    Default Khan Academy avatar avatar for user
  • blobby green style avatar for user bobnolan123
    I still don't follow the argument for using combinations in which order does not matter in this question. For example, why should we count both HTH and HHT if order does not matter in combinations? Shouldn't that just be one outcome? How is this different from seating individuals ABCD in 3 seats where using combinations would state that ABC CBA and BCA are all the same outcome?
    (2 votes)
    Default Khan Academy avatar avatar for user
  • piceratops ultimate style avatar for user Pieter
    Can someone explain the problem below please?

    A multiple-choice question on an economics quiz contains 10 questions with five possible answers each. Compute the probability of randomly guessing the answers and getting exactly 9 questions correct.

    Thanks a lot for your help!
    (2 votes)
    Default Khan Academy avatar avatar for user
    • ohnoes default style avatar for user Max Jung
      What is important here is that we have to get exactly 9 questions correct, but the question didn't constrain us that which question we have to get wrong, which means any of the ten questions can be the wrong one.

      First, we'll calculate how many outcomes we'll have.
      There are five possible answers each, so there are 5^10 possible outcomes.
      Then, we'll assume that we got the first one wrong and all the others correct. Then, we'll have 4 possible outcomes on the first question to get wrong, and all the other 9 questions have only one outcome to get right. so, 4*1^10=4.
      And then, there are 10 possible options for the one question to get wrong: The first one, the second one, the third one,...., the tenth one. So, the number of all the outcomes that satisfy our situation is 4*10=40.
      So our answer is: 40/5^10=8/5^9, which is about 0.0005%.
      (2 votes)

Video transcript

Find the probability of getting exactly two heads when flipping three coins. So let's think about the sample space. Let's think about all of the possible outcomes. So I could get all heads. So on flip one I get a head, flip two I get a head, flip three I get a head. I could get two heads and then a tail. I could get heads, tails, heads, or I could get heads, tails, tails. I could get tails, heads, heads. I could get tails, heads, tails. I could get tails, tails, heads. Or I could get tails, tails, and tails. These are all of the different ways that I could flip three coins. And you can maybe say that this is the first flip, the second flip, and the third flip. Now, so this right over here is the sample space. There's eight possible outcomes. Let me write this, the probability of exactly two heads, I'll say H's there for short. The probability of exactly two heads, well what is the size of our sample space? I have eight possible outcomes. So eight, this is possible outcomes, or the size of our sample space, possible outcomes. And how many of those possible outcomes are associated with this event? You could call this a compound event, because there's more than one outcome that's associated with this. Let's think about exactly two heads. This is three heads, so it's not exactly two heads. This is exactly two heads right over here. This is exactly two heads right over here. There's only one head. This is exactly two heads. This is only one head, only one head, no heads. So you have one, two, three of the possible outcomes are associated with this event. So you have three possible outcomes. Three outcomes associated with event. Three outcomes satisfy this event, are associated with this event. So the probability of getting exactly two heads when flipping three coins is three outcomes satisfying this event over eight possible outcomes. So it is 3/8.