Main content
NASA
Course: NASA > Unit 3
Lesson 3: Curiosity rover: mission briefing- Why go to Mars?
- Seeking signs of habitability
- Where to look?
- Destination: Gale crater
- Navigation
- Rover vision
- ChemCam
- Surface and atmospheric studies
- Curiosity's arm
- Curiosity's hand
- Chemistry and mineralogy
- SAM Instruments
- Preparing for landing
- Entry, descent & landing
- MSL Brief
- Curiosity landing simulation
© 2023 Khan AcademyTerms of usePrivacy PolicyCookie Notice
Where to look?
A mild history
Curiosity will land in a region where this key item on the checklist of life’s requirements has already been determined: It was wet. How could have Mars been wet? Mars axis isn’t stable like Earth, and when it tilts extremely the poles grow resulting in ice ages.
This ice cycles back to liquid water during periods of warming. Here is NASA’s hypothesised history of water on Mars:
Today we still find evidence of ice below the surface when asteroids strike as seen by the Mars reconnaissance orbiter
Except this ice will evaporate rapidly because water isn’t stable on surface due to the low atmospheric pressure. Below is some recent evidence of current outflows. It is believed that these streaks are formed by short term discharge of salty waters when Mars heats up briefly in the summer.
If we look at ancient Mars using this Topographic map, we see enormous outflow channels and valleys into blue depression.
So water wasn’t “short term” in the past as it is today. There was definitely a watery past.
Where are we looking (spatially)?
Running water results in sediments which are deposited in an alluvial fan. Here is the Landing site in relation to the alluvial fan fed by Peace Vallis:
Using an IR spectrometer, we can better understand the composition of the sediment carried by the water:
Green have been identified as clay and carbonates. This is important as clays are a result of long term interaction of water and rock. While the pink represents salt minerals (sulphate) which are deposited by water. Here is a close up picture showing the border of Columbus Crater. Sulfate salt deposits ring the crater like a bathtub ring and were deposited after the clays, as the lake dried out.
This means that the crater was once filled with water. Below is an artist's rendition of a hypothetical sea that may have once filled Mars’ largest crater, Hellas, located in the planet’s southern hemisphere.
If we look at the history of Martian rock more broadly we notice we see 2 phases in the geologic record: “iron/magnesium clays” and then “aluminum clays”.
Iron/Magnesium clays form when the ratio of water interacting with rock is low. While aluminum clays are signs of a high water/rock ratio as soluble elements are carried off by water which alters the composition of the rocks. Aluminum clays may form by near-surface leaching while iron/magnesium clays may form in the subsurface.
Impact craters are excellent locations to explore rock history, so long as they date back to the periods when Mars could have been much wetter…
Where are we looking in time?
Martian valley networks have long been viewed as some of the best evidence of prolonged surface water on Mars. The density and complexity of the networks makes it much more likely we're looking at valleys that formed by runoff of some kind of precipitation. Below is a global map of valley networks on Mars, based on a global mosaic of Mars Odyssey THEMIS images. You can see how the valleys follow local topography
These new results imply that Mars had a long-lived period or periods of mild conditions toward the end of the Noachian epoch that supported a hydrologic cycle and potentially a biosphere. Most of these systems seem to have formed around the Noachian-Hesperian boundary (3.8–3.6 billion years ago). That's a very narrow span, at a very ancient time.
So we hope to examine the history of rock at key divisions in the geological record. right around the “clay era”, which is wet, then dry which results in sulphate deposits.
Next we choose our destination….
Want to join the conversation?
- Why did the water on mars disappear(10 votes)
- Would you be able to explain to me how the magnetic field would disappear without gold or iron? Is the magnetic sphere what gives the planet an atmosphere?(10 votes)
- Why doesn't Mars have a magnetic field like Earth?(4 votes)
- Wait, so if there is no magnetic field shouldn't the atmosphere just be blasted into space, from solar waves?(2 votes)
- did mars really have water millions of years ago?(2 votes)
- could humans live on mars?(3 votes)
- So basically, yes, we could live on Mars. But... to live on Mars's resources, that would be a no, because there is minimum water there, and the water that is there is frozen solid and is mixed with acids.(1 vote)
- I would think a astroid would leave a lump not a crater(0 votes)
- An asteroid would leave a lump if it were dropped from a few hundred feet but asteroids come from much farther. The reason asteroids are destructive is not necessarily their size but their speed. Except in very special cases, any asteroid will enter Earth's atmosphere at least at escape velocity which is 11 kilometers per second. Most asteroids moving this fast will get obliterated by the atmosphere before they can make it to the ground. Some however are too large and slip through, impacting the ground at incredibly high speeds. A large rock hitting the ground at 10 kilometers per hour will break apart but will leave a lump of debris behind. A large rock hitting the ground at 10 kilometers per second will be blasted to pieces in a massive explosion that will rip part of the ground apart, leaving a crater.(5 votes)
- Does it ever rain on Mars? And do I capitalize Mars?(2 votes)
- It doesn't rain on Mars because the temperatures are below freezing. you can see liquid methane rain on Titan, or colonize Mars( terraform Mars and make it habitatible):)(1 vote)
- is there a perserverance rover?(2 votes)
- what is the "Noachian epoch"?(2 votes)
- How thin is the mars's atmosphere?(0 votes)