Main content
AP®︎/College Biology
Course: AP®︎/College Biology > Unit 1
Lesson 3: Introduction to biological macromoleculesIonic bonds
Atoms interact with each other through the formation of chemical bonds. One type of chemical bond is an ionic bond. Ionic bonds result from the attraction between oppositely charged ions. For example, sodium cations (positively charged ions) and chlorine anions (negatively charged ions) are connected via ionic bonds in sodium chloride, or table salt. Created by Sal Khan.
Want to join the conversation?
- Can metals only form ionic bonds with nonmetals or is it possible to have two metals in an ionic bond?(11 votes)
- Two metals can't form an ionic bond. The requirements for this bond are the losing of electrons by one element and gaining by another. There is no metal in existence that accepts electrons. So, ionic bond between only metals is not possible.(38 votes)
- As elements gain electrons does their electronegativity increase? For example, if oxygen gains an electron is it now as electronegative as fluorine?(16 votes)
- So how can you look at something like NH3 or BeO, etc. and tell what type of bond it is?(4 votes)
- As a general rule, look at the elements involved. In BeO there is a metal and a nonmetal so you’d expect it to be ionic, NH3 is a nonmetal and a nonmetal so you’d expect covalent.(17 votes)
- Is it possible for Sodium to gain seven electrons instead of lose one electron to become complete ?(5 votes)
- One will never see that happening in nature because of Electronegativity (the amount that an atom attracts electrons). Atoms on the left of the periodic table (such as Sodium) have very low electronegativity, so they will not fight hard to keep their electrons, making it very easy to have their last electron stolen and very hard for them to nick 7 more electrons.
Another approach is from the Coulomb Law perspective. Think about the fixed amount of positive charge in the nucleus and the growing negative charge in the valence shell. The atom in question, Sodium, will grow increasingly unstable as the electrons repel each other and the protons fail to attract hard enough.(12 votes)
- What is the most accepted definition of an ionic bond vs polar covalent vs nonpolar covalent?
Obviously, 0 electronegativity difference would result in nonpolar covalent regardless. But besides that, I've seen numbers all over the place.
Currently, my college professor is using the following stats:
< 0.5 → non-polar covalent
0.5 - 1.6 → polar covalent
>1.6 → ionic
I've been contact with him a lot lately, but I figured I would ask this here to give him a break. lol
Anyway, does IUPAC or other "higher authorities" have official standards that they go by that I can cite?
The last several years I have basically used whatever arbitrary numbers I happen to have found in the search results...
Thanks!(5 votes)- Using electronegativity differences between atoms in a bond is a fair way to gauge a bond's polarity. There's a couple issues with this method though. First is agreeing on what ranges to use. There isn't a single set of ranges that are unanimously agreed on. The ranges you've listed look acceptable.
The more conceptual second reason is that it views bonds in an absolute sense. In that a certain electronegativity difference like 1.6 would be polar covalent, but slightly higher and it would be entirely ionic. With this view bonds are either one or the other, but never both or a combination of the two.
However in reality bonds are certain percentages covalent and ionic. In this sense covalent character can be seen as to what degree bonding electrons are shared and electron density exists between the atoms. And ionic character can be seen as to what degree the electrons are transferred to one atom. We can quantify these behaviors by something called percent ionic character. This lists bonds between 0% thru 100% with 0% being completely covalent and 100% being completely ionic. Using percent ionic character, we can still classify bonds as being predominantly covalent or ionic but it reminds us that a bond is usually never completely one or the other. With the exception of completely nonpolar covalent bonds with a percent ionic character of 0%. Pretty much no ionic bond reaches 100% ionic character though since there is at least some small degree of electron sharing. Linus Pauling, the chemist who developed the Pauling scale for electronegativity, used >50% ionic character as the mark for them a bond which was predominantly ionic. Predominantly covalent bonds would have an ionic character of <50%, and this could be further broken down into polar and nonpolar covalent. These ionic character percentages correspond to electronegativity differences (50% ionic character for example would means an electronegativity difference of 1.7) so they're alternative ways of gauging bond polarity, but percent ionic character reminds us though that bond type isn't black and white.
Another way to quantify a bond's polarity is using its dipole moment. A dipole moment is essentially a vector pointing towards the more electronegative atom showing where charge is accumulating in a bond. Bond dipole moments also correspond to electronegativity differences so they will agree with each other.
Personally I prefer using something called the Van Arkel–Ketelaar triangle for determining bond type. It's essentially a triangle which inputs electronegativity differences and averages from two bonding atoms and plots them in a 2D plane. The x-axis being the average electronegativity and the y-axis being the electronegativity difference. The regions where bonds could possibly be form a triangle and this triangle is partitioned into ionic, polar covalent, nonpolar covalent, and metallic. It also always us to determine the percent ionic character of a bond too. So it's a wider view of bonding which includes the possibility of metallic bonding which electronegativity differences alone do not account for.
So there are several valid ways to view bond polarity which can get increasingly complex depending on how detailed of an answer you'd like. Using simply electronegativity differences is most likely more than adequate for most general chemistry classes. So using your professors numbers will get you by. It's just good to keep in mind the variability of classifying a bond's polarity.
Hope that helps.(9 votes)
- How do you know sodium has 1 valence electron and chlorine has 7 valence electron?(5 votes)
- The last digit of the group number tells you the number of valence electrons for main group elements.
Na is in group 1 -> 1 valence electron
Cl is in group 17 -> 7 valence electrons(6 votes)
- what is chemical bonding(4 votes)
- A chemical bond is a strong, lasting attraction between atoms or ions.(7 votes)
- Please make it more simple(3 votes)
- Okay, so an ionic bond is a bond between a metal and a nonmetal. The metal, starting from group 1 and going to group 3, will have a charge of +1 to +3. The nonmetal, from group 8 to group 6 (in that direction) will have a charge of -1 to -3. You need to match the charges, and you have an ionic compound.
Does that help?(8 votes)
- Can you have multiple elements in an ionic bond, so if chlorine, sodium, and hydrogen all exchanged electrons, or can it only be two elements?
And what good does it do gaining and losing electrons?(3 votes)- Question 1: yes, there can be more than 2 elements.
Question 2: gaining/losing electrons helps atoms reach a full subshell, like the noble gases have.(5 votes)
- is it possible for elements that usually lose electrons, eg sodium, to gain electrons, and vice versa?(6 votes)
- yes it is possible
Elements that are metals tend to lose electrons and become positively charged ions called cations. Elements that are nonmetals tend to gain electrons and become negatively charged ions called anions. Metals that are located in column 1A of the periodic table form ions by losing one electron.
link-https://www.enotes.com/homework-help/which-elements-tend-lose-electrons-what-charge-646296(2 votes)
Video transcript
- [Instructor] Most of what
we've talked about so far has been atoms in isolation. We have thought about the number of electrons and protons and neutrons and the electron configuration of atoms. But atoms don't just operate in isolation. If that were the case, the
whole universe including us would just be a bunch of
atoms drifting around. What begins to be interesting is how the atoms actually
interact with each other. And one of the most interesting
forms of interaction is when they stick to each other
in some way shape or form. And this sticking together of atoms is what we are going to study in this video. Another way to talk about
it is, how do atoms bond? Now as we will see, there
are several types of bonds and it's really a spectrum. But let's just start with
what I would consider one of the more extreme type of bonds. And to understand it, let's get
a periodic table of elements out right over here. So let's say that we are dealing
with a group one element. Let's say sodium right over here. What's interesting about
group one elements is that they have one valence electron. If we want to visualize
the valence electrons for, say, sodium we could do it with what's known as a Lewis dot structure or a Lewis electron dot structure, sometimes just called a
dot structure for short. But because a neutral sodium
has one valence electron, we would just draw that one
valence electron like that. Now let's go to the other
end of the periodic table and say, look at chlorine. Chlorine is a halogen. Halogens have seven valence electrons so chlorine's valence
electrons would look like this. It has one two three four five
six seven valence electrons. And so you could imagine
chlorine would love to get another electron in order to complete its outer shell. And we've also studied in
other videos these atoms, these elements at the top
right of the periodic table which are not the noble gases, but especially the top of these halogens, things like oxygen, nitrogen. These are very electronegative. They like to pull
electrons, hog electrons. And so what do you
think is going to happen when you put these characters together? This guy wants to lose the electrons and chlorine wants to gain an electron. Well, maybe the chlorine
will take an electron from the sodium. On a real chemical reaction, you would have trillions of these and they're bouncing around and different things are happening but just for simplicity, let's just imagine that
these are the only two. And let's imagine that
this chlorine is able to nab an electron from this sodium. So what is going to happen? This sodium is then going to
become positively charged, 'cause it's going to lose an electron. And then the chlorine,
the chlorine is now going to gain an electron. So it's going to become a chloride anion. Anion is a negative ion. It's a sodium cation, a positive ion. Ion means it's charged. And now it's a chloride anion. So it has the valence
electrons that it had before and then you could imagine that it gains one from the sodium. And now it has a negative charge. Now what do we know about
positively charged ions and negatively charged ions? Opposites attract. Coulomb forces. So these two characters are going to be attracted to each other, or another way to think of it, they're gonna stick together, or another way you could think about it, they are going to be bonded. And they will form a
compound of sodium chloride. And notice the whole
compound here is neutral. It has a plus one charge for the sodium, a negative one charge for the chloride, but taken together it is neutral because these are hanging out together. And this type of bond between ions, you might guess what it's called. It is called an ionic bond. Ionic bond.