Main content
AP®︎/College Biology
Course: AP®︎/College Biology > Unit 6
Lesson 5: Regulation of gene expression and cell specialization- DNA and chromatin regulation
- Regulation of transcription
- Cellular specialization (differentiation)
- Non-coding RNA (ncRNA)
- Operons and gene regulation in bacteria
- Overview: Gene regulation in bacteria
- Lac operon
- The lac operon
- Trp operon
- The trp operon
- Overview: Eukaryotic gene regulation
- Transcription factors
- Regulation of gene expression and cell specialization
© 2023 Khan AcademyTerms of usePrivacy PolicyCookie Notice
Non-coding RNA (ncRNA)
Non-coding RNAs (ncRNAs) are functional RNA molecules that don't translate into proteins. They play vital roles in cellular processes, including transcription and translation. Key examples include micro RNAs (miRNAs), ribosomal RNAs, transfer RNAs, small nucleolar RNAs (snow RNAs), and small nuclear RNAs (snRNAs). These ncRNAs help regulate gene expression, protein synthesis, and maintain cellular structures. Created by Tracy Kim Kovach.
Want to join the conversation?
- How is the binding of miRNAs, mentioned at, regulated? Or do they always bind complementary mRNA strands? If that is the case, can you give me an example of a gene that would always be silenced? Thanks :-)! 1:02(7 votes)
- I'm not sure if I fully understand your question, but I will attempt to give you an answer.
An important part of a miRNA is what is called the "seed region". MiRNAs on average are about 21 nucleotides long, but there doesn't need to be perfect complementary binding between the entire miRNA and the mRNA it is targeting. Only the seed region (about 3-8 nucleotides) needs to perfectly match between the miRNA and the mRNA for regulation to occur.
The degree to which binding is complementary or not also seems to affect whether the mRNA is simply inhibited or if it is completely degraded. For example if the miRNA and mRNA perfectly bind the mRNA would be degraded, if the match was say, 50% complementary, it seems the mRNA is left intact but is just prevented from being translated.
It isn't as simple as miRNA 1 inhibits mRNA of gene 2. One miRNA can target many genes and each gene has multiple miRNAs that target it. For example, collagen (important structural protein in the body) is regulated by at least 20+ miRNAs (if not more). However, miR29 specifically inhibits collagen mRNA expression (as an example). Some miRNAs can also have a positive influence on gene expression so, overall it is very hard to get a "big picture" idea of what will be the net regulation of a gene if you only know the abundance of one miRNA that regulates it.
Also, sometimes the miRNA are actually coded as introns within the gene it is regulating. So when the gene is expressed, it will have miRNAs there ready to regulate its expression.
Hope that helps.(9 votes)
- what is the difference between hnRNA and PremRNA?(2 votes)
- Precursor mRNA is a type of hnRNA (heterogeneous nuclear RNA), but hnRNA can specifically refer to nuclear RNA transcripts that never end up going to the cytoplasm as mRNA (that is, the unprocessed primary transcripts).(4 votes)
- How do miRNAs actually work, though? Do they simply pair up with complementary base pairs on the mRNA and they (I guess) cut the mRNA molecule preventing transcription? What about the degradation instead? I am little confused on the actual mechanism....(3 votes)
- miRNA is actually one of the few types of RNAs classified as RNA interference (RNAi). These groups of RNAs are closely associated with the Argonaute (AGO) family proteins. AGO binds with one RNA strand, creating an RNAi-induced silencing complex (RISC), to facilitate the interactions with the complementary target mRNA. Specifically for miRNA, they are not fully complementary to the mRNA, so a part of it is bound while the rest is not. This is because the main function of the miRNA is to stop translation of the mRNA by hindering it from being processed by the ribosome, hence silencing the gene expression. If it were to be fully complementary (like small interfering RNAs, or siRNAs), it could cause an activation of a region in the AGO protein that cleaves and degrades the mRNA.(2 votes)
- You mention transesterification is how the spliceosome connects the two parts of the pre-mRNA together. But looking at the structure of RNA, I don't see any ester groups?(2 votes)
- Sorry for the late response, but this interested me as well so I had to find out.
In splicing pre-mRNA, two transesterification processes are performed by the spliceosome for the excision of introns and the ligation of exons.
The first of the 2 processes involves an intermediate lariat structure, in which a 2'5' phosphodiester bond between the 5' guanosine residue of the intron and a certain adenosine residue near the 3' end of the intron is formed. In other words, a phosphodiester transfer occurs to exchange a 3'-5' bond for a 2'-5' bond in the formation of a lariat structure.
The second transesterification reaction is in order to ligate exons. Similar to the first one, 3'-5' phosphodiester bonds are exchanged in order to connect the coding parts of the pre-MRNA together, rather than cleaving them and creating a lariat structure for the decomposition of the introns.
Sorry if this was a little wordy, I felt that the information was contextual. Nonetheless, to summarise, the phosphodiester bond transferral between parts of mRNA constitute the transesterification processes that are involved in its splicing.(2 votes)
- "snRNA + snRNP = spliceosome" is confusing because snRNP already contains snRNA. It should say "5 snRNA + >150 proteins = spliceosome".(2 votes)
- Do ncRNA's undergo any post-transcriptional modifications or are they mature and fully functional immediately after they are released from RNAP? I am struggling to find out about ncRNA transcription and whether they undergo methylation/ polyadenylation or any other modifications :)(2 votes)
- so the miRNA basically prevents a mRNA from expressing. So what does a cell do if it needs the gene product, that is if it wants to overcome miRNA inhibition of the particular gene?(2 votes)
- So telomerase is an snRNA?(1 vote)
- Telomerase is a ribonucleoprotein, it is a complex between an RNA and a protein.(2 votes)
- What is translational repression and target degradation?1:21(1 vote)
- What does ribosomal RNA do in ribosomes?(1 vote)
- it helps create the proteins. i'll walk you through. As the mRNA leaves the nuclues into the cytoplasm their are rRNA that are in to parts. along with the rRNA in the cytoplasm is tRNA or traslational RNA that are shaped like a hair pin. on top of the tRNA is a little amino acid that is connect due to strucure of the tRNA. at the bottom of the tRNA is a 3 or 4 neucletide bases that are called the anti codon as the mRNA floats in the cytoplasm is comes across the two parts of the rRNA attaches to each other and forms a ribosome. then the ribosomes takes the mRNA and feeds it through while grabing tRNA that their anticodon is complementary to three bases in a row on the mRNA that are called codons and the amino acids connect to create protiens. i know that was long and complicated and there is a lot that i didn't hit but hope that answered your question.(1 vote)
Video transcript
Voiceover: What is a non-coding RNA? A non-coding RNA, or an
ncRNA, as it is abbreviated, is a functional RNA
molecule that actually skips this last step and is not
translated into a protein. In other words, they just go
directly from transcription into an RNA molecule and then go off to perform any number of vital
functions within the cell. There are many examples
of non-coding RNAs, including micro RNAs,
ribosomal RNAs, transfer RNA, the list goes on and on. As we go through each
of these different types and examples of non-coding RNAs, you'll start to see that there's sort of an emerging theme, here. That is that most of these
non-coding RNAs participate in either transcription or translation in one capacity or another. Let's start off with micro RNAs. Micro RNAs, or miRNAs,
function in transcriptional and post transcriptional
regulation of gene expression. They do this by base paring
with complementary sequences within mRNA, or messenger RNA, molecules. This usually results in gene silencing through translational repression
or target degradation. In essence, the mRNA to
which these micro RNAs bind are prevented from being translated or they are sent on a
pathway for degradation. The next set of non-coding RNAs
that we'll be talking about are all involved in translation. The first of which is ribosomal RNA. Ribosomes are the cellular machinery used to translate mRNA into proteins. It is made up of one type of
RNA molecule, ribosomal RNA. Transfer RNAs are an adapter
molecule that links the codons in an mRNA strand to the
corresponding amino acids. This is another type of non-coding RNA that you'll see in translation. The thrid type is called snow RNA, which stands for small nucleolar RNA. It's a class of small RNA molecules that guide covalent
modifcations of ribosomal RNA, transfer RNA, and small nuclear RNAs, primarily through methylation,
which is the addition of methyl groups, or pseudouridylation, which is the addition of an isomer of the nucleoside uridine. Another class of non-coding RNAs are the small nuclear RNAs, or snRNAs, not to be confused with the snow RNAs, the small nucleolar RNAs
that we just talked about. Small nuclear RNAs get
their name from the fact that the average length
of these RNA molecules is approximately 150 nucleotides. Their primary function
is in the processing of pre-mRNA in the nucleus. They also aid in the regulation
of transcription factors or a particular RNA polymerase,
RNA polymerase two, as well as maintaining
telomeres, which are the regions of repetitive nucleotide sequences
at the end of a chromotid, which protects the end of the
chromosome from deterioration during chromosomal replication. SnRNA can be associated with
a set of specific proteins and form complexes that are called small nuclear ribonucleic
proteins, or snRNPs or sometimes people just call them snRPs. There is a special snRP
complex called the spliceosome, made up of five small nuclear
RNAs and over 150 proteins that is responsible for
splicing, or removing, the introns contained in messenger RNA, which is a major step in
the post transcriptional modification that takes place
in the nucleus of eukaryotes. The way the the spiceosome
does this is that it binds to specific sequences in
the pre-messenger RNA strand and performs two sequential
transesterification reactions that splice out the intron and
then [lagate] the two exons to form a mature mRNA. Now you know a little
bit more some examples of non-coding RNAs and
some of the functions that they perform within the cell.