Main content
AP®︎/College Biology
Course: AP®︎/College Biology > Unit 7
Lesson 1: Natural selectionBiodiversity and natural selection
Patterns and processes of evolution. How evolution and natural selection are reflected in the similarities and differences of organisms. Video by California Academy of Sciences.
Want to join the conversation?
- Would the racehorses of today be faster than the racehorses of the not so distant past, say 70 years ago?(3 votes)
- I would like to say that natural selection does not necessarily select for a trait, but rather balances.
In the video, they gave the example of the Redwood tree. A taller tree would better get sunlight during fog. However, if they become too tall, then they are more susceptible to storms, and they might have trouble getting the moisture from the roots to the leaves.
The same applies to speed of racehorses. The faster they are, the more humans would select them to reproduce. So, it would be more logical that horses today are much faster, and in a thousand years, the horses would become a lot faster, right? Wrong. Why? Because the faster the horse is, the more energy they need. In other words, they would need to eat more. At some point, they might not be able to find enough food to stay alive, and in the end die because of natural selection. So, I believe that the speed of horses at some point will reach a limit.(5 votes)
- wouldn't bugs after a couple generations be completely resistant to things like bug spray?(2 votes)
- That is definitely a possibility. The risk of resistance is always there. But note that this resistance is not compulsory. Depending on how the bug spray works, it may be easy or very difficult to come up with a resistance strategy. If the bug spray depends on one very specific channel in the bug neurons, a simple mutation might confer resistance and hence, it might be quite likely that resistance develops. But if the bug spray does something more complicated (or alternatively, imagine you are squashing bugs instead of the bug spray), resistance would require the bugs to evade the squashing hand (become faster, more invisible) or be so tough that they cannot be squashed easily. These are not simple changes, and may either take a lot of time to evolutionarily appear or may never appear if your squashing game is good.(4 votes)
- Since bugs reproduce much quicker than humans, they undergo natural selection much faster than primates do, therefore they can adapt and improve much faster than we can. If this is true, why did we, humans, become intelligent while other insects didn't?(2 votes)
- Intelligence isn't a goal of evolution. There is no direction evolution is driving towards.(3 votes)
- I wonder, if the redwood trees (like so in the example at) can be more vulnerable to storms if they are taller but can't get much sunlight if they are shorter, is there some height in the middle that could overcome those 2 problems (or if a shorter tree could reproduce with a taller tree to have offspring with a nice in-between height)? 5:19(2 votes)
- Trees which are shorter than redwood but again, taller than the rest - are in the middle. Protected by storms, however in the shadow regarding light (if they are next to the redwoods):
The storm is not that big deal because storms do not hašpen every other day and do not always damage trees. As for sunlight - trees have to do photosynthesis throughout the year, every single day. That's why I see, thunderstorms are nob big deal for tall trees. It is true there is no one size fits all solution, but species are finding a compromise.(0 votes)
- How do the amimals come to make this huge evormeantle world that humans are spoling how does this biodiversity comes togther with evolution life is really complex and were animals here before humans or is it biodiversity that made evolution or the other way around?(0 votes)
- There have been millions-if not billions- of species before humans entered the scene. The earth is over 4 billions year old, with life starting around 3.5 billion years ago. Modern humans evolved about 200,000 years ago. As you can see, that's a big difference. Evolution "causes" biodiversity.(0 votes)
- so are DNA shares your histroy(0 votes)
- Yeah. Pretty much.(1 vote)
Video transcript
(slow music) - [Instructor] Where does
biodiversity come from? The simple answer to that
question is evolution and we could leave it at that. We could all go home because we're done, but that's not going to
make much of a video. What we really wanna ask
ourselves is what is that? What is evolution and how does
it result in biodiversity? I like to think of the study of evolution as following two fairly simply pathways. These paths are pattern and process. Both of these are not only
fascinating areas of study, but are crucial in expanding our knowledge of how life originated and
how it continues to evolve. The pattern pathway studies
the shape of evolution itself by looking at relationships, relationships among organism over time. And to do that, you need to
create a diagram or a structure that links these organisms in time showing a branching
sequence of relationships much like a family tree or genealogy. These evolutionary trees record not only the relationships among the organisms, but the events that occurred over time that indicate why we think these different organisms are related. Patterns depicted by genealogical trees really are a subject all on their own called phylogenetic systematics. But let's set that aside for a moment. The process path is maybe a
slightly better way to start. We want to talk about the
mechanisms of evolution. How it actually happens. These are the drivers of the diversity along the multitude of
lineages that spring out branching and branching up the tree, up the limbs of the tree of life. Darwin and even some of his
predecessors understood this. They could see that things could change. That the pattern of
life, this tree, existed, that evolution happened
and that the relationships among organisms could be traced by looking at features of those
organisms and how they change depending on where they were in the tree. They could see, for example,
that the wings of birds, the front legs of mammals
and reptiles and, in fact, all the four limbed animals indicated that there was some
common relationship there. There was common lineage. But at the same time,
you could have change among the branches within those lineages. You could get a change in
the front leg to a wing or to a grasping arm. General patterns were
evident in everything. But at the time, there
wasn't a good understanding of the mechanisms. The processes that could explain how these obviously changing,
yet related forms could come about. Darwin and his contemporaries
read a lot of stuff about variation, which was
visible all around them. It could all be seen. They realized that not all
the individuals in a species or even in a population were
exact duplicates of each other. This was a surprise to some people, but the evidence was everywhere, even in things as simple as
the speed of race horses. If you didn't have variation in how fast horses could run, the races
would be pretty boring. Races actually demonstrate
how horses were chosen for variations in speed. Humans bred fast horses with each other to get even faster horses and these horses were selected for being the fastest and that's the key word, selection. Darwin thought, hey what
if nature worked that way. What if nature selected
organisms some how. He noticed that the
form and the physiology and the behavior of plants and animals varied within natural
populations just as much as they did in domesticated
populations of things like horses. Darwin realized that what
we're really talking about here are the beginnings of the understanding of the evolutionary
mechanism behind evolution, natural selection. Natural selection means
that some natural variance, some individuals with different form or physiology or behavior, might be better at getting through life than others. Better that is of gathering food, staying away from predators, turning sunlight into usable energy, resisting wind, having good root systems. In other words, fitting the circumstances of the environment and surviving. What Darwin was really
saying is that fitness of an individual meant being better able to produce offspring that
had traits like the parent. Traits that would help the
offspring be better suited to the conditions of their environment. This has been referred to
as survival of the fittest. Actually, I prefer the
phrase survival of the fitter because fittest implies
that there's an end point, that there's a goal, but there isn't. It's all relative because
there are so many compromises and trade offs and being
well suited to a place as complex as the natural
world that organisms can never reach that perfect
match in all respects. This process of the
environment selecting variants that are better suited
to that environment, no matter how complex is
called natural selection. And those traits that
make the selected variance better able to survive and reproduce and pass on those traits
to future generations are known as adaptations. For example, a wild
population of redwood trees might have some individuals that attain greater heights than
others and this results in better exposure to
sunlight on foggy days enhancing their ability to
make food by photosynthesis when a change in the environment such as the fog rolling
in, challenges the survival of shorter trees. This in turn not only increases their individual chances for survival, but it also makes available more energy to the taller redwoods
to produce more seeds that carry this tallness
trait into future generations. So you get natural selection
for a tallness trait and an adaptation to an environment that can present changes. Of course, as I mentioned,
these simplistic examples kind of skim over the
fact that there's always a series of trade offs in nature. We have to consider, for
example, that taller trees might have more trouble
getting moisture from the roots all the way up to the tips
of those highest branches, or that they could be
more exposed to storms that could knock them down, or maybe there's some
other physiological cause that we might not even have thought of. All these factors are part
of a complicated balance that optimizes life to a
given environmental situation or set of competing selective factors. Stuff happens. Life is never simple. To me, all these aspects come together to represent the great beauties of life, this constant interplay of processes that results in the
complexity of biodiversity, what Darwin called grandeur
in this view of life. The flip side of this selection coin is that individuals in a population can also be selected against, because they're less well adapted, sometimes because of
susceptibility to diseases or simply by not being good
at avoiding being eaten. Something that keeps those individuals from being reproductively successful. You might have noticed by now that there's an important element to
this story of variation, selection, and adaptation
that's missing here. Darwin noticed it too. He was a very smart guy
and he fully recognized that there had to be some
way by which organisms could pass on those selected traits, those adaptations to their offspring. It wouldn't work otherwise. There had to be a way that
the offspring of individuals that had been selected for
could inherit the traits of their successful parents and ancestors. In Darwin's day, there
wasn't a good understanding of a mechanism for that. It was only much later
that scientists discovered how information is stored
in genetic material and passed on to offspring. Today, our detailed understanding
of evolutionary processes is built on the discoveries of both Darwin and geneticists. Stepping back now to put it all together, we can see that for all this to work, several different things
have to be going on. You have to have variation in nature among the members of a population. You have to have natural
forces that can select for or against the enhanced
reproduction of individuals who possess certain variations. And you have to have a mechanism by which those selected
variations get passed on, inherited by offspring and
their future generations. These simple concepts are
essentially all you really need for evolution to happen and
from these basic principles, we get all the complicated
interweavings and interactions among all the factors that
become the underlying drivers of Earth's biodiversity. (slow music)