Main content
AP®︎/College Environmental science
Nuclear power generation
Nuclear power generation is a nonrenewable energy source used to generated electricity through uranium fission. It is considered clean energy because it does not produce air pollutants, but it does release thermal pollution and hazardous radioactive solid waste.
Created by Khan Academy.
Want to join the conversation?
- Why didn't the video mention give an example of a nuclear meltdown, like Chernobyl, a nuclear power plant disaster in 1986? 4:12(2 votes)
- because there is a finite amount of uranium(1 vote)
- Is there any academic definition (environmental science) of "clean energy"? As far as I looked up, I could not find a clear definition. Sometimes nuclear is included as clean and sometimes not. Some people include nuclear as clean energy since it doesn't pollute the air. Some people consider it is not clean energy since the radioactive waste is produced. The other people don't include since uranium fission is not renewable. But I see renewable and clean are different concepts.(1 vote)
- I searched Wikipedia for "clean energy" and it redirected to "Sustainable Energy". Nuclear energy is included as a sustainable but non-renewable energy source. Another non-renewable energy source that appears in the article is fossil fuel switching and mitigation. In the article, sustainable energy is defined as a source of energy which is perfect for the present and does not affect the future while renewable energy is defined as an energy source that practically does not get used up.(2 votes)
- Is nuclear power renewable.(1 vote)
- no, because there is a finite amount of uranium in the world(1 vote)
- can you split an atom in another way and why fission how much energy can be made per second.(1 vote)
- Isn’t thorium a better fuel than uranium? I mean, isn’t it safe and plentiful?(1 vote)
- I have a question, and maybe it’s a bit weird: Can’t you do nuclear fusion on radioactive waste? I mean, do fission on uranium, and then fuse the waste together to keep generating electricity?(1 vote)
- Why is nuclear power nonrenewable.(0 votes)
- because there is a finite amount of uranium in the world(1 vote)
Video transcript
- [Professor] Hey there, friends. Today, we're going to
learn about nuclear power, and to do so, we're gonna
visit my home state. Idaho? That's right. Land of the potatoes
and also nuclear power? If you've driven through Idaho, there's a good chance that you passed by a quaint small town called Arco where you'll find the
restaurant Pickle's Place, home to the Atomic Burger. Wait, a radioactive burger?
Sounds a little disturbing. Actually, Arco became the
first city in the world to be powered by nuclear energy. And of course, Arco became the first city to serve Atomic Burgers,
grilled and seared to perfection using nuclear energy. But what's going on under that grill? Are they using glowing green rocks to make those delicious Atomic Burgers? Let's find out. Nuclear power plants often look ominous and a little bit scary, but they produce power the same way most other power plants do. Simply put, they boil
water to create steam, which spins turbines to produce energy. Most nuclear power plants
use light water reactors to generate electricity, which are made up of five basic parts. First off, we have the core of the reactor where fuel rods are inserted. Next up, we have the containment shell that encases the reactor
and the spent fuel rods. Within there, we have supply of water, which is boiled to reduce steam. That steam then rotates a turbine attached to a generator which produces electricity. This act of turning an electric generator is actually the same process
that's used for coal, gas, geothermal, hydro
power, and wind power. No matter how complex the
electricity generation system, that all boils down to the same idea, basically turning a wheel, one of the oldest
agricultural-era human inventions, and that's what makes electricity. Finally, we have excess
steam or water vapor, which is the only direct emission from nuclear power generation. Easy as pie, right? Well,
it's actually pretty complex. So how is the water heated exactly? Nuclear energy isn't as
easy as lighting up a grill, and it requires us to go down to the smallest unit of matter, the atom. Here, we get our energy
at the atomic level, but it's not from the atom alone. No, to gain energy, we
need to split the atom. This process is called
fission, which occurs when neutrons are fired at an atom, causing it to split into separate atoms of other smaller elements. This split produces a
huge amount of energy, which is largely converted to heat, which boils the water and produces steam. However, we need a special kind of atom for fission to happen, and most nuclear reactors use uranium-235. Wait, why uranium-235 though? Well, first, uranium-235 is big, not a triple 1/4 pounder big
but big on the atomic scale. In the atomic world, this
is known as being heavy. Secondly, uranium-235 is unstable
because it's not only big, but it's also an isotope,
meaning it has a different number of neutrons than the more
common form of uranium, which is uranium-238, which
has three more neutrons. This makes uranium-235 unstable
or fissile like fission, which means it can be split by a neutron, thereby producing other elements,
energy, and more neutrons. Those produced neutrons
crash into other U-235 atoms, splitting them and
causing a chain reaction, which is what makes nuclear energy work. This chain reaction is
really important to note because it's what makes a
nuclear power plant so different from its, well, more destructive
cousin, the atomic bomb. In atomic bombs, the same process
of nuclear fission is used except that it's a fast
destructive, runaway, and uncontrolled reaction that results in massively powerful explosions, not something that we would want to happen in a nuclear power plant. Now a little goes a long way when it comes to nuclear fission. The fuel is actually
composed of tiny pellets of uranium-235, each the
size of a pencil eraser, but each also has the equivalent
energy of a ton of coal. Yes, a literal ton. These pellets are packed
together to form fuel rods, which are bunched into fuel assemblies and then placed in the nuclear reactor. Nuclear fusion is
therefore really powerful and can generate a lot of heat
from very little material. But to keep temperatures
from getting too hot, which would cause a nuclear meltdown, and no, I'm not talking about
melty cheese, unfortunately, the reactor is therefore
cooled with water. When more heat is generated
by the nuclear reactor than can be removed by the cooling system, or water in the case of nuclear reactors, the fuel rods can get so hot
that they could start to melt and fall to the bottom of the reactor and potentially melt through and escape into the surrounding environment. That's called a nuclear meltdown, and that's also why in part,
the reactor is surrounded by a containment shell of
thick steel and concrete, which keeps radioactive
materials from escaping. We don't wanna have any
radioactive burgers. But fuel rods don't last forever. After three to six years in a reactor, fuel rods can't sustain the
fission reaction effectively anymore and become highly radioactive. In turn, they need to be
carefully removed and stored. But what to do with nuclear waste? The problem with spent nuclear fuel is that it's really radioactive. These leftover radioactive
materials can persist in the air, soil, and water for thousands
and thousands of years and damage the DNA of living organisms, causing cancer and
other health conditions. For a while, actually quite a long time from 1946 to 1993, to be exact, many countries just dumped
radioactive nuclear waste into the ocean. This was consequently banned,
and you can imagine why. Instead, nuclear waste can be buried, but there's problems with that, too. Nuclear waste can still leak into soil and water if it isn't properly contained. So where do we safely bury
it? Well, nowhere really. Radioactive spent fuel is stored all over the world in various
containment systems, but none of them are truly longterm. Alternatively, spent fuel
rods can also be recycled and reprocessed where unused uranium is separated from spent nuclear fuel. However, this reprocessing is
quite expensive and dangerous. Reprocessing is often much more expensive than storing or disposing
of spent nuclear fuel, and it still results
in a substantial amount of leftover radioactive materials that still need to be disposed of. There's no perfect solution when it comes to energy production, though. Any kind of electricity production has its own benefits and drawbacks. But Pickle Place's Atomic
Burger is quite perfect, and I think I'll eat one now.