Main content
Biology library
Sexual life cycles
Types of sexual life cycles: diploid-dominant, haploid-dominant, and alternation of generations.
Introduction
Do you ever wish you could clone yourself (for example, so you could get twice as much done in a day)? Because you’re a human being, you can’t just divide in two to make an extra you. If you were another type of organism, though – let’s say a starfish, or maybe a cactus – cloning yourself might be less of a big deal.
Some starfish can make more genetically identical starfish simply by breaking off an arm, which will then regrow into a complete animal. Similarly, some cacti can clone themselves by dropping fragments of their branches, which take root and develop into new, genetically identical cacti .
These reproductive strategies are examples of asexual reproduction, which produces offspring genetically identical to the parent (that is, to the original starfish or cactus). In contrast, many plants, animals, and fungi produce offspring through sexual reproduction.
In sexual reproduction, sex cells (gametes) from two parents combine in the process of fertilization, leading to the formation of a new, genetically distinct individual. Some organisms, including the starfish and cacti in the example above, can actually reproduce in either a sexual or an asexual mode .
All sexually reproducing species have certain key life cycle features in common, such as meiosis (the production of haploid cells from diploid ones) and fertilization (the fusion of haploid gametes to form a diploid cell called the zygote). Beyond these basic elements, however, there can be a lot of variation in sexual life cycles. In this article, we’ll look at different types of sexual life cycles used by different organisms, from humans to ferns to bread mold.
Types of sexual life cycles
Sexual life cycles involve an alternation between meiosis and fertilization. Meiosis is where a diploid cell gives rise to haploid cells, and fertilization is where two haploid cells (gametes) fuse to form a diploid zygote. What happens between these two events, however, can differ a lot between different organisms—say, between you and a mushroom or oak tree!
There are three main categories of sexual life cycles.
- In a diploid-dominant life cycle, the multicellular diploid stage is the most obvious life stage, and the only haploid cells are the gametes. Humans and most animals have this type of life cycle.
- In a haploid-dominant life cycle, the multicellular (or sometimes unicellular) haploid stage is the most obvious life stage and is often multicellular. In this type of life cycle, the single-celled zygote is the only diploid cell. Fungi and some algae have this type of life cycle.
- In alternation of generations, both the haploid and the diploid stages are multicellular, though they may be dominant to different degrees in different species. Plants and some algae have this type of life cycle.
Let's make these ideas more concrete by looking at an example of each type of life cycle.
Diploid-dominant life cycle
Nearly all animals have a diploid-dominant life cycle in which the only haploid cells are the gametes. Early in the development of an animal embryo, special diploid cells, called germ cells, are made in the gonads (testes and ovaries). Germ cells can divide by mitosis to make more germ cells, but some of them undergo meiosis, making haploid gametes (sperm and egg cells). Fertilization involves the fusion of two gametes, usually from different individuals, restoring the diploid state.
Haploid-dominant life cycle
Most fungi and some protists (unicellular eukaryotes) have a haploid-dominant life cycle, in which the “body” of the organism—that is, the mature, ecologically important form—is haploid.
An example of a fungus with a haploid-dominant life cycle is black bread mold, whose sexual life cycle is shown in the diagram below. In sexual reproduction of this mold, hyphae (multicellular, thread-like haploid structures) from two compatible individuals first grow towards each other.
Where the hyphae meet, they form a structure called the zygosporangium. A zygosporangium contains multiple haploid nuclei from the two parents within a single cell. The haploid nuclei fuse to form diploid nuclei, which are equivalent to zygotes. The cell containing the nuclei is called the zygospore.
The zygospore may stay dormant for long periods of time, but under the right conditions, the diploid nuclei undergo meiosis to make haploid nuclei that are released in single cells called spores . Because they were formed through meiosis, each spore has a unique combination of genetic material. The spores germinate and divide by mitosis to make new, multicellular haploid fungi.
Alternation of generations
The third type of life cycle, alternation of generations, is a blend of the haploid-dominant and diploid-dominant extremes. This life cycle is found in some algae and all plants. Species with alternation of generations have both haploid and diploid multicellular stages.
The haploid multicellular plants (or algae) are called gametophytes, because they make gametes using specialized cells. Meiosis is not directly involved in making the gametes in this case, because the organism is already a haploid. Fertilization between the haploid gametes forms a diploid zygote.
The zygote will undergo many rounds of mitosis and give rise to a diploid multicellular plant called a sporophyte. Specialized cells of the sporophyte will undergo meiosis and produce haploid spores. The spores will then develop into the multicellular gametophytes.
Although all sexually reproducing plants go through some version of alternation of generations, the relative sizes of the sporophyte and the gametophyte and the relationship between them vary among species.
In plants such as moss, the gametophyte is a free-living, relatively large plant, while the sporophyte is small and dependent on the gametophyte. In other plants, such as ferns, both the gametophyte and sporophyte are free-living; however, the sporophyte is much larger, and is what we normally think of as a fern.
In seed plants, such as magnolia trees and daisies, the sporophyte is much larger than the gametophyte: what we consider the “plant” is almost entirely sporophyte tissue. The gametophyte is made up of just a few cells and, in the case of the female gametophyte, is completely contained inside of the sporophyte (within a flower).
Why is sexual reproduction widespread?
In some ways, asexual reproduction, which makes offspring that are genetic clones of the parent, seems like a simpler and more efficient system than sexual reproduction. After all, if the parent is living successfully in a particular habitat, shouldn’t offspring with the same genes be successful too? In addition, asexual reproduction only calls for one individual, removing the problem of finding a mate and making it possible for an isolated organism to reproduce.
Despite all this, few multicellular organisms are completely asexual. Why, then, is sexual reproduction so common? This question has been hotly debated, and there is still disagreement about the exact answer. In general, though, it’s thought that sexual reproduction offers an evolutionary advantage – and thus, is widespread among organisms alive today – because it increases genetic variation, reshuffling gene variants to make new combinations. The processes that generate genetic variation in all sexual life cycles are: crossing over in meiosis, random assortment of homologous chromosomes, and fertilization.
Why is this genetic variation a good thing? As an example, let’s consider the case where a population’s environment changes, perhaps through the introduction of a new pathogen or predator. Sexual reproduction continually makes new, random combinations of gene variants. This makes it more likely that one or more members of a sexually reproducing population will happen to have a combination that allows survival under the new conditions (e.g., one that provides resistance to the pathogen or allows escape from the predator).
Over generations, beneficial gene variants can spread through the population, allowing it to survive as a group under the new conditions.
Want to join the conversation?
- what happens to the offspring if the number of chromosomes from parental cells are not halved(14 votes)
- This leads to a condition known as polyploidy (more than two sets of chromosomes).
Assuming this only happened for one parent, what you are describing would result in triploid§ offspring (organisms with three copies of each chromosome). In many cases (particularly in animals) a zygote that has the wrong number of chromosomes will die. Even in plants, which are much more tolerant of polyploidy, this would likely result in the offspring being sterile – in fact, many "seedless" fruits (e.g.s bananas, oranges, and many other citrus fruits) come from triploid plants.
Further reading:
https://en.wikipedia.org/wiki/Polyploid
§Note: This is assuming that the parents are diploids.(11 votes)
- Why zygosporangium contain multiple haploid nuclei from the two parents.(fungus)(5 votes)
- A zygosporangium contains multiple haploid nuclei from the two parents within a single cell. The haploid nuclei fuse to form diploid nuclei, which are equivalent to zygotes. The cell containing the nuclei is called the zygospore.(5 votes)
- For a haploid cell, they take 1 chromosome from each set of chromosomes. Is it random for each one? For humans there are 46 chromosomes(2n) and the gamete has 23 chromosomes(n). So, how are the chromosomes picked per set? The cell has 2 choices, is it random which one is picked?(4 votes)
- Yes, the selection of chromosomes is random — this is known as independent assortment.
Furthermore, whether the paternal or maternal allele is picked for any given gene also occurs somewhat randomly.
This is because during meiosis there is recombination (exchange of DNA between the maternal and paternal chromosomes) — this means that each chromosome in a gamete will contain sections from both parents.
This leads to an essentially infinite number of possible genetic combinations within the gametes of a single individual!
Does that help?(4 votes)
- In the paragraph 'Alternation of Generations', it is stated that seed plants exhibit alternation of generations. I don't quite understand how this differs from the diploid-dominant life cycle of an animal - after all, a plant comprised mainly of diploid cells creates haploid gametes that fuse to create a diploid zygote, which is similar to the process seen in animals. Why is it that seed plants are said to exhibit 'Alternation of Generations', while animals are said to be diploid-dominant?(3 votes)
- The key is the last sentence from the first paragraph of the Alternation of Generations section — "Species with alternation of generations have both haploid and diploid multicellular stages."
This is easiest to see in non-vascular plants and ferns where you can have separate diploid and haploid organisms during the lifecycle. In most vascular plants the gametophytes (haploid phase) are very reduced and totally dependent on the sporophytes (diploid phase), but they are still multicellular.
These videos may help make this clearer:
https://www.khanacademy.org/science/biology/crash-course-bio-ecology/crash-course-biology-science/v/crash-course-biology-135
https://www.khanacademy.org/science/biology/crash-course-bio-ecology/crash-course-biology-science/v/crash-course-biology-137(6 votes)
- Does the sperm cell that fertilizes the egg cell differ genetically from the egg in the life cycle of mosses? I'm unsure because I know that (1) the eggs and sperm are produced by female and male gametophores, respectively and (2) the male & female gametophytes are produced from spores.
I suppose that the answer to this question depends on whether or not the egg and sperm come from the offspring of the same parent or not. What do you guys think?(4 votes)- First all first, there is no sperm in mosses.
Mosses mostly reproduce by spores.
As for gametogenesis, there are archegonia and antheridia, not ovum and spermatozoid. Bryophyte sperm is called antherozoid.(3 votes)
- i dont understand y do we under go mitosis(2 votes)
- In the plant life cycle, are gymnosperms and angiosperms a gametophyte and is physically and physiologically dependent on its sporophyte? Or do mosses/ferns fit this description?(2 votes)
- Gymnosperms and Angiosperms do not have gametocyte and sporopgyte phases - it only applies to Mosses and Ferns.(2 votes)
- how long is a gamete cell cycle time(2 votes)
- Sexual cells are sexually active (undergoing meiosis) once the meiotic division II is triggered in puberty until the age of 50 approximately for women, and for the men it is going in later decades of life.
IF you ask how long one cycle persists it depends on whether we are speaking of men or women. In men it is 55 days https://pubmed.ncbi.nlm.nih.gov/19745218-spermatogenic-cycle-length-and-sperm-production-in-a-feral-pig-species-collared-peccary-tayassu-tajacu/
in woman in it one month (menstrual cycle).(2 votes)
- If gametes are specialized cells for reproduction, then how are the embryonic stem cells from the zygote unspecialized?(2 votes)
- what two stages of meoios of cell divson called(2 votes)