Main content
Biology library
Course: Biology library > Unit 36
Lesson 1: Crash Course: Biology- Why carbon is everywhere
- Water - Liquid awesome
- Biological molecules - You are what you eat
- Eukaryopolis - The city of animal cells
- In da club - Membranes & transport
- Plant cells
- ATP & respiration
- Photosynthesis
- Heredity
- DNA, hot pockets, & the longest word ever
- Mitosis: Splitting up is complicated
- Meiosis: Where the sex starts
- Natural Selection
- Speciation: Of ligers & men
- Animal development: We're just tubes
- Evolutionary development: Chicken teeth
- Population genetics: When Darwin met Mendel
- Taxonomy: Life's filing system
- Evolution: It's a Thing
- Comparative anatomy: What makes us animals
- Simple animals: Sponges, jellies, & octopuses
- Complex animals: Annelids & arthropods
- Chordates
- Animal behavior
- The nervous system
- Circulatory & respiratory systems
- The digestive system
- The excretory system: From your heart to the toilet
- The skeletal system: It's ALIVE!
- Big Guns: The Muscular System
- Your immune system: Natural born killer
- Great glands - Your endocrine system
- The reproductive system: How gonads go
- Old & Odd: Archaea, Bacteria & Protists
- The sex lives of nonvascular plants
- Vascular plants = Winning!
- The plants & the bees: Plant reproduction
- Fungi: Death Becomes Them
- Ecology - Rules for living on earth
© 2023 Khan AcademyTerms of usePrivacy PolicyCookie Notice
Photosynthesis
Hank explains the extremely complex series of reactions whereby plants feed themselves on sunlight, carbon dioxide and water, and also create some by products we're pretty fond of as well. Created by EcoGeek.
Want to join the conversation?
- How do indoor plants create energy for themselves without photosynthesis?(44 votes)
- They can't survive without Photosynthesis, indoor plants are specially adapted to live in environments where light is sort of limited, they can have special pigments that allows them to use other wavelength of lights.(6 votes)
- What if there's no sun, but only artificial light? Can a plant make photosynthesis easily that way?(36 votes)
- Yes, a plant could still photosynthesize in artificial light. Photons would still be reaching the leaf, which is what matters- it's arbitrary if it's natural or not, so long as its an acceptable wavelength of light.(59 votes)
- If I had to guess, I would say that PSI and PSII were named in the order of their discovery. Is this correct?(14 votes)
- That's true. Even though electrons hit PS II and then PS I, they are called PS II and then PS I due to the order of their discovery.
I'm guessing the first was just called Photosystem and the only when they discovered the second photosystem they called is PS I(12 votes)
- What exactly is the Calvin Cycle? I have completely no idea. And what does it have to do with this topic, anyways? And what was he talking about atthrough 1:24? Thanks! 1:54(7 votes)
- The Calvin's cycle is a part of the light independent reactions in Photosynthesis which uses the ATP and the NADPH from the light dependant reaction. This reactions main aim is to produce sugar or glucose as food for the plant.(11 votes)
- I learned that the general but unsimplified chemical equation for photosynthesis is 6CO2 + 12 H2O -> C6H12O6 + 6O2 + 6 H2O. (the 6 H20 would normally be simplified). I wanted to know where these 6 product H2O were produced. Thank you.(9 votes)
- Those 6 water molecules are left over from the production of glucose. The glucose does not evenly use all the water molecules, so there are some left over.(8 votes)
- Should PS2 and PS1 have their names switched, because the PS2 is used in the cycle before the PS1?(5 votes)
- Yes, but PS1 was discovered before PS2 was discovered which is why they are named that way.(7 votes)
- Since RiBisCo is an enzyme, does it have a chemical formula?(3 votes)
- RuBisCO is an enzyme. An enzyme is a protein which is rather characterized by its aminoacid sequence (http://www.uniprot.org/uniprot/P08927, scroll down to sequence, written in one letter code for aminoacids) rather then its chemical formula.
The great subunit from pea would be like C2754 H4584 N760 O885 S15, which does not help at all.(10 votes)
- Since photosynthesis requires light, do plants in a sense "sleep" during the night?(3 votes)
- No plants dont sleep during the night. They carry out other activities , stomatal closing and opening and ion concentration mechanisms.(4 votes)
- Why can't light independent reactions take place during the night?(4 votes)
- Because they require a lot of energy in the form of ATP and NADPH. Since plants generate these molecules by the light-dependent reactions, they regulate the light-independent reactions so they only occur during the light when there is a steady supply ATP and NADPH.(3 votes)
- how the plants change colors depend the season? is beacause the clorophile?(3 votes)
Video transcript
- Photosynthesis, it is not some kind of abstract scientific thing. You would be dead without
plants and their magical, nay, scientific ability to convert sunlight, carbon dioxide
and water into glucose and pure, delicious oxygen. This happens exclusively
through photosynthesis, a process that was developed
450 million years ago and actually rather sucks. It's complicated,
inefficient and confusing but you are committed to having a better deeper understanding of our world or more probably, you'd like
to do well on your test. So let's delve. (upbeat energetic music) There are two sorts of
reactions in photosynthesis: the light dependent reactions and the light independent reactions. And you've probably already
figured out the difference between those two, so that's nice. The light independent reactions
are called the Calvin Cycle. No, not, no, no, no, yes. That Calvin Cycle. Photosynthesis is basically
respiration in reverse and we've already covered
respiration so maybe you should just go watch
that video backwards or you could keep watching this one. Either way, I've already talked about what photosynthesis needs in order to work: water, carbon dioxide and sunlight. So how do they get those things? First, water. Let's assume that we're talking
about a vascular plant here. That's the kind of plant
that has pipe-like tissues that conduct water,
minerals and other materials to different parts of the plant. These are like trees and
grasses and flowering plants. In this case, the roots of
the plants absorb the water and bring it to the leaves
through tissues called xylem. Carbon dioxide gets in and oxygen gets out through tiny pores in the
leaves called stomata. It's actually surprisingly
important that the plants keep oxygen levels low
inside of their leaves for reasons that we will get into later. And finally, individual
photons from the sun are absorbed in the plant by
a pigment called chlorophyll. Alright, you remember plant cells? If not, you can go watch the video where we spent the whole time
talking about plant cells. One thing the plant cells have that animal cells don't, plastids. And what is the most important plastid? The chloroplast. Which is not, as it is
sometimes portrayed, just a big fat sac of chlorophyll. It's got complicated internal structure. Now, the chlorophyll is stashed in membranous sacs called thylakoids and the thylakoids are stacked into grana. Inside the thylakoid is the lumen and outside of the thylakoid, but still inside of the chloroplast, is the stroma. The thylakoid membranes
phospholipid bilayers, which if you remember, means that they are
really good at maintaining concentration gradients
of ions and proteins and other things. This means keeping the
concentration higher on one side than the
other of the membrane, you're going to need to know
all of these things, I'm sorry. Now that we've taken a little
tour of the chloroplast, it's time to get down
to the actual chemistry. First thing that happens, a photon created by the
fusion reactions of our sun is about to end its 93
million mile journey by slapping into a
molecule of chlorophyll. This kicks off stage one, the
light dependent reactions. Proving that, yes, nearly
all life on our planet is fusion-powered. When chlorophyll gets hit by that photon, an electron absorbs that
energy and gets excited. This is the technical term
for electrons gaining energy and not having anywhere to put it. And when it's done by a photon
it's called photoexcitation. But let's just imagine
for the moment, anyway, that every photon is
whatever dreamy young man 12 year old girls are
currently obsessed with. And electrons are 12 year old girls. The trick now, and the entire
trick of photosynthesis, is to convert the energy
of those 12 year olds, I mean electrons, into something that the plant can use. We are literally going
to be spending the entire rest of the video talking about that. I hope that that's okay with you. That first chlorophyll
is not on its own here, it's part of an insanely
complicated, complex of proteins and lipids and other molecules called photosystem two that contains at least
99 different chemicals, including over 30 individual
chlorophyll molecules. This is the first of
four protein complexes that plants need for the
light dependent reactions. And if you think it's complicated that we call the first
complex photosystem two instead of photosystem one, then you're welcome to call
it by its full name which is plastoquinone oxidoreductase. Oh no, you don't want to call it that? Right then, photosystem two. Or if you want to be brief, PS two. PS two, and indeed, all
of the protein complexes in the light dependent
reactions straddle the membrane of the thylakoids in the chloroplast. Now, that exited electron
is going to go on a journey designed to extract all of its new energy and convert that energy into useful stuff, this is called the
electron transport chain. In which energized electrons
lose their energy in a series of reactions that capture
the energy necessary to keep life living. So PS two's chlorophyll
now has this electron that is so excited that
when a special protein designed specifically for
stealing electrons shows up, the electron actually leaps
off of the chlorophyll molecule onto the protein, which we
call a mobile electron carrier because it's a mobile electron carrier. The chlorophyll then
freaks out like a mother who has just had her 12
year old daughter abducted by a teen idol, as is like what do I do to fix this problem? And then it, in cooperation
with the rest of photosystem two, does something
so amazing and important that I can barely believe that
it keeps happening everyday, it splits that ultra-stable molecule, H2O, stealing one of its electrons to replenish the one it lost. The byproducts of this water splitting; hydrogen ions, which
are just single protons and oxygen, sweet sweet oxygen. This reaction, my friends, is
the reason that we can breath. Brief interjection, next time someone says
that they don't like it when there are chemicals in their food, please remind them that all
life is made of chemicals and would they please stop
pretending the word chemical is somehow a synonym for carcinogen. Beause, I mean, think
about how chlorophyll feels when you say that. It spends all of its time and energy creating the air we breath and we're like ew, chemicals are so gross. Now, remember all energized
electrons from PS two have been picked up by electron carriers and now are being transported
to the second protein complex, the Cytochrome Complex. This little guy does two things: one, it serves as an intermediary
between PS two and PS one. And two, it uses a little
bit of that energy from the electron to pump another
proton into the thylakoid. So the thylakoid's starting
to fill up with protons. We've created some by splitting water, and we moved one using
the Cytochrome Complex, but why are we doing this? Well, basically what we're doing is charging the thlakoid like a battery. By pumping the thylakoid with protons, we're creating a concentration gradient. The protons then naturally
wanna get the heck away from each other and so
they push their way through an enzyme straddling
the thylakoid membrane called ATP Synthase. And that enzyme uses that energy to pack an inorganic phosphate onto ADP making ATP the big daddy cellular energy. All of this moving along
the electron transport train requires energy and as you might expect, electrons are entering lower
and lower energy states as we move along. This makes sense when you think about it, it's been a long while since
those photons zapped us. We've been pumping hydrogen
ions to create ATP, it's splitting water and jumping
onto different molecules, and I'm tired just talking about it. Luckily, as 450 million years
of evolution would have it, our electron is now about
to get re-energized upon delivery to photosystem one. So PS one is a similar mix of proteins and chlorophyll molecules
that we saw in PS two but with some different products. After a couple of photons re-excite a couple of the electrons, the electrons pop off and hitch a ride onto another electron carrier. This time all of the energy
will be used to help make NADPH, which like ATP, exists solely
to carry energy around. Here, yet another enzyme
helps combine two electrons and one hydrogen ion
with a little something called NADP plus. As you may recall from our
recent talk about respiration, they're sort of the distant
cousins of B vitamins that are crucial to energy conversion. In photosynthesis, it's NADP plus and when it takes on those two electrons and one hydrogen ion, it becomes NADPH. So what we're left with now after the light dependent reactions is chemical energy in the
form of ATPs and NADPHs. And also, of course, we should not forget the most useful useless byproduct in the history of useless
byproducts, oxygen. If anybody needs a potty break,
now would be a good time. Or if you wanna go
re-watch that rather long and complicated bit about
light dependent reactions, go ahead and do that. It's not simple and it's not
gonna get any simpler from here because now we are moving
along to the Calvin Cycle. The Calvin Cycle is sometimes
called the Dark Reactions which is kind of a miss misnomer because they generally don't occur in the dark. They occur in the day along
with the rest of the reactions. But they don't require energy from photons so it's more proper to say
light independent reactions. Or if you're feeling non-descriptive, just say Stage Two. Stage Two is all about using the energy from those ATPs and NADPHs
that we created in Stage One to produce something that's
actually useful for the plant. The Calvin Cycle begins in the stroma, or the empty space
inside of the chloroplast if you remember correctly. And this phase is called carbon fixation because, yeah, we're about
to fix a CO two molecule onto our starting point,
ribulose bisphosphate or RuBP, which is always around in the chloroplast because not only is it the starting point of the Calvin Cycle,
it's also the end point which is why it's a cycle. CO2 is fixed to RuBP with
the help of an enzyme called ribulose one five
bisphosphate carboxylase oxidase which we generally shorten to RuBisCO. (upbeat piano music) I'm in the chair again, excellent. This time for a biolo-graphy of RuBisCO. Once upon a time, a
one-celled organism was like man, I need more carbon so
I can make more little me's so I can take over the whole world. Luckily for that little
organism there was a lot of CO2 in the atmosphere, and
so it evolved an enzyme that could suck up that CO2
and convert inorganic carbon into organic carbon. This enzyme was called RuBisCO and it wasn't particularly good at its job but it was a heck of a lot better than just hoping to run into some chemically formed organic carbon so the organism just made a ton of it to make up for how bad it was. Not only did the little
plant stick with it, it took over the entire planet, rapidly becoming the
dominant form of life. Slowly, through other reactions known as the light dependent reactions, plants increased the amount
of oxygen in the atmosphere. RuBisCO, having been
designed in a world with tiny amounts of oxygen in the atmosphere started getting confused. As often as half of the time, RuBisCO started slicing ribulose bisphosphate with oxygen instead of CO2, creating a toxic byproduct
that plants had to deal with in creative and specialized ways. This byproduct called phosphogycolate is believed to tinker
with some enzyme functions including some involved
in the Calvin Cycle. So plants have to make other enzymes that break it down into
amino acid, glycine, and some compounds that are actually useful to the Calvin Cycle. But, plants that are already
sort of gone all in on the RuBisCO strategy, to this
day, they have to produce huge amounts of it. Scientists estimate that at any given time there are about 40 billion
tons of RuBisCO on the planet. And plants just deal with
that toxic byproduct, another example, my friends,
of unintelligent design. Back to the cycle. So ribulose bisphosphate
gets a CO2 slammed onto it and then immediately, the whole
thing gets crazy unstable. The only way to regain stability is for this new six-carbon chain to break apart creating two molecules of three phosphoglycerate. And these are the first stable
products of the Calvin Cycle. For reasons that will
become clear in a moment, we're actually gonna do this
to three molecules of RuBP. Now, we enter the second phase, reduction. Here we need some energy. So some ATPs slams the
phosphate group onto the three phosphoglycerate and then
NADPH pops some electrons on and wallah, we have two
molecules of glyceraldehyde three phosphate or G three P. This is a high energy
three carbon compound that plants can convert into
pretty much any carbohydrate like glucose for short
term energy storage, cellulose for structures,
starch for long term storage. And because of this, G
three P is considered the ultimate product of photosynthesis. However, unfortunately
this is not the end, we need five G three Ps to
regenerate the three RuBPs that we started with. We also need nine molecules of ATP and six molecules of NADPH. So with all these chemical reactions, all of this chemical energy, we can convert three
RuBPs into six G three Ps but only one of those G three
Ps gets to leave the cycle. The other G three Ps, of course
being needed to regenerate the original three ribulose bisphosphates. That regeneration is the last
phase of the Calvin Cycle. And that is how plants turn sunlight, water and carbon
dioxide into every living thing you've ever talked to,
played with, climbed on, loved, hated, or eaten. Not bad, plants.