Main content
Biology library
Course: Biology library > Unit 36
Lesson 1: Crash Course: Biology- Why carbon is everywhere
- Water - Liquid awesome
- Biological molecules - You are what you eat
- Eukaryopolis - The city of animal cells
- In da club - Membranes & transport
- Plant cells
- ATP & respiration
- Photosynthesis
- Heredity
- DNA, hot pockets, & the longest word ever
- Mitosis: Splitting up is complicated
- Meiosis: Where the sex starts
- Natural Selection
- Speciation: Of ligers & men
- Animal development: We're just tubes
- Evolutionary development: Chicken teeth
- Population genetics: When Darwin met Mendel
- Taxonomy: Life's filing system
- Evolution: It's a Thing
- Comparative anatomy: What makes us animals
- Simple animals: Sponges, jellies, & octopuses
- Complex animals: Annelids & arthropods
- Chordates
- Animal behavior
- The nervous system
- Circulatory & respiratory systems
- The digestive system
- The excretory system: From your heart to the toilet
- The skeletal system: It's ALIVE!
- Big Guns: The Muscular System
- Your immune system: Natural born killer
- Great glands - Your endocrine system
- The reproductive system: How gonads go
- Old & Odd: Archaea, Bacteria & Protists
- The sex lives of nonvascular plants
- Vascular plants = Winning!
- The plants & the bees: Plant reproduction
- Fungi: Death Becomes Them
- Ecology - Rules for living on earth
© 2023 Khan AcademyTerms of usePrivacy PolicyCookie Notice
DNA, hot pockets, & the longest word ever
Hank imagines himself breaking into the Hot Pockets factory to steal their secret recipes and instruction manuals in order to help us understand how the processes known as DNA transcription and translation allow our cells to build proteins. Created by EcoGeek.
Want to join the conversation?
- I wonder who actually wrote the longest word down.(40 votes)
- This guy on YouTube actually says it out loud. The video is more than three hours long: https://www.youtube.com/watch?v=NFR-ADakI-c(5 votes)
- how long does this splicing process take?(21 votes)
- It isn't a set time, but since most body cells reproduce take between 20 minutes and 24 hours (with the exception of liver, egg and nerve cells which take upwards of a year to reproduce), it would only take a fraction of that time.(17 votes)
- why uracil is present in rna specially?what is its function? pls explain me.(16 votes)
- In RNA, uracil takes the function of thymine in that is pairs up with adenine.
One theory as to why DNA uses thymine and not uracil is because thymine could potentially lead to DNA being more stable, helping with efficiency during DNA replication.(13 votes)
- Who thought of the idea of naming one protein so absurdly huge?(8 votes)
- the name is based on all the amino acids present in it... so the more no. of amino acids in a protien the longer is its name(3 votes)
- I thought the longest word consisted of 1,909 letters. It's the term for C1289H2051N343O375S8. It's a Tryptophan synthese A protien, an enzyme that has 267 Amino Acids. Is it not?(7 votes)
- You are partly correct, the 1,909 letter word is the largest published word. This word is disputed and is not in the dictionary for obvious reasons, but it is accepted by many people.
http://en.wikipedia.org/wiki/Longest_word_in_English(10 votes)
- Hank talks about the different levels of protein () what do the different levels of protein do, and what characterizes them? 13:03(5 votes)
- Primary structure: amino acid sequence
Secondary structure: initial folding in the protein caused by hydrogen bonding between amino acids: pleated sheets or alpha helixes
Tertiary structure: additional folding due to attractions between R groups: covalent bonds, hydrogen bonds, disulfide bridges, hydrophobic interactions, ionic bonding
Quaternary structure: combination of protein subunits to form final protein(6 votes)
- Is the promoter the "tata" box or something else?(4 votes)
- The core promotor sequence is the TATA box(4 votes)
- who invented the longest word?(5 votes)
- Nobody 'invented' it. That is just the one string of all amino acids composing our genome.
Our genome was decoded 14 years ago.(2 votes)
- can anyone explain what is the difference between messenger rna and transfer rna(1 vote)
- Messenger RNA (mRNA) contains the transcript of a protein-encoding gene, Transfer RNA (tRNA) is a short adaptor molecule that assists the ribosomes in translating the mRNA into a protein.(6 votes)
- Why is thymine (T) replaced by uracil (U) in the messenger RNA?(3 votes)
- Uracil requires less energy to produce than thymine, hence its presence in RNA.(3 votes)
Video transcript
Ok, roll it. You know what this is? It is the longest word in the world. Like, anywhere, any language, more than 189 thousand letters. If you were to write it
down, though I don't know why you would, it'd fill up
more than a hundred pages! And if you could actually say it without breaking your face,
it'd take about five hours! So what the frick is this word? It's the name of the longest
known protein on earth. And it's actually in you right now. Because of its enormous size, it was given the nickname
Titin by scientists. And that's with two I's. It's a protein that helps give some of the springiness to your muscles. Today we're going to be
talking about DNA and how it, along with three versions
of its cousin RNA, unleash chemical kung fu to synthesize proteins just like this. This is going to take a while to explain, so how about if we make
ourselves some Hot Pockets. (upbeat music) Mmmm, my favorite. Ham and cheese. Every time I take a bite I
wonder, how do they do it? How do they pack exactly the same flavor into every foil-cardboard
wrapped food-ish item? Clearly there has got to be
some super secret instruction manual kept in a location
known to only two people. And since I'm talking about biology here, that brings up a related question: How did I get built from
the DNA instructions and biological molecules
we've been talking about? Today, that's what I'm going to do. Not actually make Hot
Pockets, or a person. But I'm going to be talking
about DNA transcription and translation, which is how we get made into the delicious things we are today. Though hopefully none of us
know how delicious people are. Animals, plants, and
also Hot Pockets, really, are nothing more than salty
water, carbohydrates, fats, and protein, combined
in precise proportions following very explicit instructions. Let's say I want to
make my own Hot Pocket. I would have to: one, break into the lair of the Hot Pocket Company
holding the secret manual. Two, read the instructions on how to make the machinery to
produce the Hot Pocket and the proportions of the ingredients. Three, quickly write down
that information in shorthand before I get caught by
the Hot Pocket police. Four, go home, follow the instructions to build the machinery
and mix the ingredients together until I have
a perfect Hot Pocket. That's how we get us. Very simply, inside the cell's nucleus, the DNA instruction manual
is copied gene by gene by transcription onto a kind of RNA, then taken out of the lair
where the instructions are followed, by the
process of translation to assemble amino acid
strings into polypeptides or proteins that make
up all kinds of stuff from this titin down here
to the keratin in my hair. But most of the polypeptides that get made aren't structural proteins like hair, they're enzymes which go on to act like the assembly machinery,
breaking down and building and combining carbohydrates
and lipids and proteins that make up variations of cell material. So enzymes are just like
whatever ingenious machinery they use at the factory to make this. Okay, let's start out in the lair-- I mean the nucleus. The length of DNA that we're
going to be transcribing onto an RNA molecule is
called our transcription unit. Let's say, in today's example,
that it's going to include the gene that transcribes
for our friend titin which, in humans at least,
occurs on Chromosome 2. Now each transcription unit
has a sequence just above it in the strand and that's
called "upstream", biologists call that
"upstream" on the strand. And that sequence sort of defines when the transcription unit is going to begin. This special sequence is the
promoter, and it almost always contains a sequence of two
of the four nitrogenous bases that we talked about in our last episode: adenine, thymine cytosine, and guanine. Specifically, the promoter
is a really simple repetition we've got thymine,
adenine, thymine, adenine, and then A-A-A. And on the other side: AT-- 'Cause you know how this works, right!? This is called the TATA box. It's nearly universal and helps our enzyme figure out where to bind to the strand. Now, you'll remember from our
episode about DNA structure that DNA strands run in
one of two directions depending on which end
of the strand is free and which end has a phosphate bond. One direction is five
prime to three prime, and the other is three
prime to five prime. In this case, upstream means
toward the three prime end and downstream means toward five prime. So the first enzyme in this
process is RNA polymerase, and it copies the DNA sequence
downstream of the TATA box, that's towards the five
prime end, and copies it into a similar type of
language: messenger RNA. Quick aside: so you'll notice that to read the DNA in order to make enzymes we need an enzyme in the first place. So it kind of gets chicken-egg here. We need the enzyme to make the DNA and the DNA to make the enzyme. So, where did RNA polymerase come from in the first place if
we haven't made it yet!? What an excellent question! It turns out all of
these basic necessities get handed down from your Mom. She packed quite a bit more into her egg than just her DNA so
we had a healthy start. So, thanks Mom! So the RNA polymerase binds
to the DNA at that TATA box, and begins to unzip the double-helix. Working along the DNA
chain, the enzyme reads the nitrogenous bases,
those are the letters, and helps the RNA version
of the nitrogenous bases floating around in the
nucleus to find their match. Now as you also might recall
from our previous episodes, nitrogenous bases only
have one counterpart that they can bond with. But RNA, which is the pink
one here, doesn't have thymine like DNA does, which is
the green and the blue. Instead it has uracil, so U appears here in T's place as the partner to adenine. As it moves, the RNA polymerase
re-zips the DNA behind it and lets our new strand of
messenger RNA peel away. Eventually, the RNA polymerase reaches another sequence downstream,
called a termination signal, that triggers it to pull off. Now, some finishing touches before this info can
safely leave the lair. First, a special type of guanine is added to the five prime end, that's
the first part of the mRNA we copied, and this is
called the five prime cap. On the other end, it
looks like I fell asleep with my finger on the
A key of my keyboard, but another enzyme added about 250 adenines on the three prime end. This is called our poly-A tail. These caps on either
end of the RNA package make it easier for the
mRNA to leave the nucleus and they also help protect
it from degradation from passing enzymes,
while also making it easier to connect with other organelles later on. But that's still not the end of it. As if to try to confuse me to protect the secret Hot Pocket recipe,
the original recipe book also contains lots of extra,
misleading information. So just before leaving the
nucleus, that extra information gets cut out of the RNA in a
process called RNA splicing. And it's something like
editing this video. The process is really complicated, but I just had to tell you
about two of the key players because they have such cool names. One, the Snurps, which are Small
Nuclear RibonucleoProteins. These are a combination
of RNA and proteins, and they recognize the
sequences that signal the start and end of
the areas to be spliced. Snurps bunch together with a
bunch of other proteins to form the spliceosome, which is
what does the actual editing as it were, breaking
the junk segments down so their nitrogenous bases
can be reused in DNA or RNA, and sticking together the
two ends of the good stuff. The good stuff that gets
spliced together, by the way, are called exons because
they'll eventually be expressed, the junk that gets cut out are just intervening segments, or introns. The material in the introns will stay in the nucleus and get recycled. So for instance, titin down
there is thought to have hundreds of exons when it's all
said and done, probably more than 360, which may be more
than any other protein. And it also contains the
longest intron in humans, some 17 thousand base pairs long. Man, titin! It is just
a world record holder! So now that it has been
protected and refined, the messenger RNA can now
move out of the nucleus. OK, a quick review of our Hot Pocket Mission Impossible caper so far: We broke into the lair
containing the instructions, we copied down those
instructions in shorthand, we added some protective coatings, and then we cut out some extra
notes that we didn't need, and then we escaped back out of the lair. Now I have to actually read the notes, make the machinery and
assemble the ingredients. This process is called translation. So next, rewind your memory,
or just watch that video again, to the episode about animal cells. Do you remember the rough
endoplasmic reticulum? I hope you do. Those little dots on the
membranes are the ribosomes, and the processed messenger
RNA gets fed into a ribosome like a dollar bill into a vending machine. Ribosomes are a mixture of protein and a second kind of RNA,
called ribosomal RNA, or rRNA, and they act together
as a sort of work space. rRNA doesn't contribute
any genetic information to the process, instead
it has binding sites that allow the incoming mRNA to interact with another special type of
RNA, the third in this caper, called transfer RNA, or tRNA. And tRNA really might as well
be called 'translation RNA' because that's what it does, it translates from the
language of nucleotides into the language of
amino acids and proteins. On one end of the tRNA is an amino acid. On the other end is a specific sequence of three nitrogenous bases. These two ends are kind
of matched to each other. Each of the 20 amino acids
that we have in our body has its own sequence at the end. So if the tRNA has the amino
acid methionine on one end, for instance, it can have UAC, as the nucleotide sequence on the other. Now it's like building a puzzle. The mRNA slides through the ribosome. The ribosome reads the mRNA
three letters at a time, each set called a triplet codon. The ribosome then finds the
matching piece of the puzzle: a tRNA with three bases that will pair with the codon sequence. That end of the tRNA, by the
way, is called the anticodon. Sorry for all the terminology. You need to know it! And of course, by bringing in the matching tRNA, the ribosome
is also bringing in whatever amino acid is on that tRNA. Ok so, starting at the
five prime end of the mRNA that's fed into the ribosome, after the five prime cap
for almost every gene, you find the nucleotide
sequence AUG on the mRNA. The ribosome finds a tRNA
with the anticodon UAC, and on the other end of
that tRNA is methionine. The mRNA, like a mile-long
dollar bill, keeps sliding into the ribosome so that
the next codon can be read, and another tRNA molecule with
the right anticodon binds on. If the codon is UUA,
then the matching tRNA has AAU on one end and
Leucine on the other, and if the mRNA has AGA, the matching tRNA has UCU on one end and
Arginine on the other. In each case that new
amino acid gets connected to the previous amino acid,
starting a polypeptide chain. Which is the beginning, the
very beginning of a protein. But it turns out there are lots of different ways to read this code. 'Cause UUA is not the only triplet that codes for Leucine, UUG does too! And argenine is coded for
by six different triplets! This is actually a good thing. It means that we can make
a few errors in copying, transcribing and translating DNA, and we won't necessarily
change the end product. This process continues, with
the mRNA sliding in a bit, the ribosome bringing in a
tRNA with another amino acid, that amino acid binding to the
existing chain and on and on, sometimes for thousands
of amino acids to make a single polypeptide chain, for example. This whole word is
basically just the names of the amino acids in
the sequence in the order in which they occur in the
protein, all 34,350 of them. But before we can make our own Hot Pockets and that string of amino acids
becomes my muscle tissue, we have some folding to do. That's because proteins, in
addition to being hella big, can also contort into very complex and downright lovely formations. One key to understanding
how a protein works is to understand how it
folds, and scientists have been working for
decades on computer programs to try to figure out protein folding. Now, the actual sequence of
amino acids in a polypeptide, what you see scrolling along down there, is called its primary structure. One amino acid covalently
bonded to another, and that one to another, in a single file. But some amino acids don't
like to just hold hands with two others, they're a bit
more promiscuous than that. The hydrogens on the main
backbone of the amino acids like to sometimes form bonds
on the side, hydrogen bonds, to the oxygens on amino
acids a few doors down. When they do that, depending
on the primary structure, they bend and fold and twist into a chain of spirals, called a helix. We also find several kinked strands laying parallel to one another,
called pleated sheets. All those hydrogen bonds in pleated sheets are what make silk strong, for instance. So in the end, our promiscuous amino acids lead to wrinkled sheets. Uh-huh! These hydrogen bonds are what help give these polypeptides their
secondary structure. But it doesn't end there. Remember the R groups that
define each amino acid? Some of them are hydrophobic. Since the protein is in the
cell, which is mostly water, all those hydrophobic groups try to hide from the water by huddling together, and that can bend up the chain some more. Other R groups are hydrophilic,
which if nothing else, means that they like
to form hydrogen bonds with other hydrophilic R groups. So we get more bonding, and more bending, and our single-file line has now taken on a massively complex
three-dimensional shape. It also explains why I can fix my bed-head by wetting my hair with water. The water helps break some
of those hydrogen bonds in the keratin which
relaxes its structure. That way I can comb it
out, and when it dries, those bonds reform, and
voila, perfect hair. All of this shape caused
by bonding between R groups gives our polypeptide
its tertiary structure. So now we have a massively
contorted polypeptide chain, and it actually contorts very precisely. Sometimes, just one chain is what makes up the whole enzyme or protein. In other proteins, like hemoglobin,
several different chains come together to from
a quaternary structure. So a quick review of structure: sequence is the primary structure, the backbone hydrogen bonds
forming sheets and spirals are the secondary structure,
R group bonds are tertiary, and the arrangement of multiple proteins together give the quaternary structure. These polypeptides are
either structural proteins, like this thing at the
bottom here that you can find in muscle or in my Hot Pocket. They might also be enzymes,
and enzymes like, do stuff. They can cut up biological
molecules like I do with this chef's knife, they can mix stuff and they can put stuff together. So from that one recipe book we got all of the ingredients and
all of the tools necessary to make me, which is
better than a Hot Pocket. Would you all agree?