Main content
Biology library
Course: Biology library > Unit 36
Lesson 1: Crash Course: Biology- Why carbon is everywhere
- Water - Liquid awesome
- Biological molecules - You are what you eat
- Eukaryopolis - The city of animal cells
- In da club - Membranes & transport
- Plant cells
- ATP & respiration
- Photosynthesis
- Heredity
- DNA, hot pockets, & the longest word ever
- Mitosis: Splitting up is complicated
- Meiosis: Where the sex starts
- Natural Selection
- Speciation: Of ligers & men
- Animal development: We're just tubes
- Evolutionary development: Chicken teeth
- Population genetics: When Darwin met Mendel
- Taxonomy: Life's filing system
- Evolution: It's a Thing
- Comparative anatomy: What makes us animals
- Simple animals: Sponges, jellies, & octopuses
- Complex animals: Annelids & arthropods
- Chordates
- Animal behavior
- The nervous system
- Circulatory & respiratory systems
- The digestive system
- The excretory system: From your heart to the toilet
- The skeletal system: It's ALIVE!
- Big Guns: The Muscular System
- Your immune system: Natural born killer
- Great glands - Your endocrine system
- The reproductive system: How gonads go
- Old & Odd: Archaea, Bacteria & Protists
- The sex lives of nonvascular plants
- Vascular plants = Winning!
- The plants & the bees: Plant reproduction
- Fungi: Death Becomes Them
- Ecology - Rules for living on earth
© 2023 Khan AcademyTerms of usePrivacy PolicyCookie Notice
Animal development: We're just tubes
Hank discusses the process by which organisms grow and develop, maintaining that, in the end, we're all just tubes. Created by EcoGeek.
Want to join the conversation?
- So can I clear up some terms here: gametes = haploid cells, zygotes = diploid cells?(17 votes)
- Yes gametes are haploid because they have half the number of chromosomes. (23 in humans)Gametes are sex cells such as sperm and eggs in many animals and pollen and ova in many plants.
Zygotes are diploid cells because they contain the full number of chromosomes. (46 in a human). The term zygote does not however refer to any diploid cell it specifically means a fertilised egg, just after two haploid cells, such as the sperm and the egg have joined together.
All normal body cells are diploid, but you would not call them all zygotes, only the fertilised egg is called a zygote.(20 votes)
- Why don't sea sponges have mouths and anuses?(10 votes)
- Sea sponges don't need any. The pores take plankton in and waste out.(20 votes)
- How come a seaponge can be chopped up and come back together but humans cant? What do they have that we dont? and if we are more complex then why cant we do it?(7 votes)
- We can't do it because we are more complex. We have a more complex organisation and require, for example, a circulatory system, which is not something that could be easily reassembled.(23 votes)
- will there ever be animals with 4 layers of tissues?(7 votes)
- Evolution is a never ending process so anything is really possible.(8 votes)
- How much sperm cells can a person send out at once?(6 votes)
- On average:
500 Billion per life time
1 Billion per month
anywhere between 40 million to 1.2 billion per ejaculation
These numbers are all for men. For females, this number is zero ;-)(10 votes)
- atwhy doesn't the actual cells get chopped up by the blender? Wouldnt that kill the actual cell and not let it reform? 1:37(5 votes)
- The cells are too small to be cut up by any normal blender. They are between 1 and 100 micrometers. That is equivalent to .0001 meters(9 votes)
- what is a morula?(2 votes)
- Morula is a cluster of 32 cells.
However, it is not considered as a young baby.
An embryo is termed a fetus (note, a fetus is still not baby) beginning in the 11th week of pregnancy, which is the 9th week of development after fertilization of the egg.(2 votes)
- How do sea sponges reproduce?(2 votes)
- they reproduce by asexual reproduction like buddind(1 vote)
- Why is a Sponge an animal?(2 votes)
- Sponges have basic characteristics of animals, which leads some scientists to believe they came from a common ancestor. Some scientists have also considered them to be a different category altogether, like a multicellular, not-so-animal like creature, even though they are in fact animals. Although sometimes mistaken as plants, sponges aren't plants because they can't make their own food or do other plant-like things.(1 vote)
- What are living beings that form only one germ layer during during embryo formation called ?(1 vote)
- Germ layers result in some specialization or separation of function between certain parts of the organism. One germ layer would just be a layer just cells. Cells, 2 germ layers (diploblastic), 3 germ layers (triploblastic). Cells don't exactly form embryos either. So, there is no name for what you're asking.(2 votes)
Video transcript
- You're a miracle. Did you know that? (ambient sitar music) Today, we're gonna talk
about animal development and the miracle of life. The process that animals go through to turn like a sperm cell and an egg cell into a multicellular
organism is incredible. No, it's not just incredible. It's unbelievably,
transcendentally magnificent, man. Magnificent! And dude, the thing is,
we're all just like tubes. - [Man Off Camera] Dude, no edge. - I know. (upbeat instrumental music) So animals, they come in all
sorts of shapes and sizes and smartnesses and things,
and in our infinite wisdom, humans have come up with a
system for classifying animals based on how similar
they are to each other. Today we're gonna be talking
about some differences between animals at the phylum level here, which happen at the earliest
stages of development. That's because a bunch of
really big decisions are made within a few moments of the
sperm fertilizing the egg, and how this early
embryonic groundwork is laid makes a big difference
when it comes to what kind of amazing multicellular being
you're gonna end up being, or you know, not so amazing. Hello, sea sponges! Animal phyla range from the
very simplest like sea sponges to the more complicated. Signs of an animal's complexity include how symmetrical it is,
how many organs it has, and how specialized its cells are. A sea sponge, for instance, is a total frickin' mess symmetry-wise, and it doesn't really have
any organs to speak of. In fact, if you were to
blenderize a live sea sponge and then leave the sponge
smoothie to settle overnight, you'd wake up the next morning to find the surviving cells had found each other and were reforming themselves
into a sea sponge again. Try doing that with any other animal. Actually, no, do not try doing
that with any other animal. The point is that most animals
are much more complicated than sponges, and an animal's complexity has everything to do with what happens in the first couple
hours of its development. And here's a neat rule of thumb: the more complex an animal
is, the more it resembles a tube with some different
stuff layered around it. And now is when you're like, Hank, what? Okay, so here's the deal. A really important clue
indicating that you're dealing with a complex life from is
how many layers of tissue it makes in its very early
stages of development. Sea sponges make just one, things like jellyfish and corals make two, and all the more complicated
animals make three. So the early stages of development are similar for most animals. Remember, sperm cells and
eggs cells are both gametes, haploid cells that only
carry one set of chromosomes. Once the sperm fertilizes the
egg, the two haploid cells fuse their information
together and form a zygote, one beautiful diploid cell
with two sets of chromosomes that contain all of the
instructions needed to create a new living thing, which is
of course totally far out. Fast forwarding to like an hour and a half after fertilization, the
zygote has started dividing and cleaving through mitosis,
resulting in two, four, eight, 16, cells, until it
creates a solid ball of 32 cells. This is actually a morula or morula, at least according to this guy. - [Recording] Morula, or morula. - And the morula actually
looks a lot like a raspberry or a mulberry, which is what
it's named after in Latin. Mm, juicy. Morula pie. Oh, God.
(Hank laughs) They're gonna ban us from schools. As more cells are created, the solid wad of cells begins to secrete the fluid that forms
a space in the center, resulting in a hollow sphere
of cells called a blastula. Okay, so pay attention, because here's where we're gonna get
down to the real business. Most animals that you
just sort of think of off the top of your head
have a mouth, right? And by the same token,
most of them have an anus. And yeah, go ahead and
get your giggles out now, because I'm going to be saying
anus a lot in this video, for example, right now, anus. But most animals have a mouth and an anus, wait for it, unless you're a sea sponge. Sponges don't have a mouth or an anus, and there are also other
animals like your sea anemones, your jellyfish, your corals,
that have just one hole that serves as both mouth and anus. (Hank laughs)
Aren't you glad we're a little bit more
complicated than that? It's worth noting that these
animals have radial symmetry. All their junk kind of radiates
out from a central point that is their mouth hole/poo hole, and that is a little
bit more sophisticated than having no symmetry at all like a sponge, but just barely. I mean, their anus and their
mouth are the same thing. But more complex animals,
with the notable exception of the echinoderms like
starfish and sand dollars, exhibit bilateral symmetry. We have two-sided bodies that
look the same on both sides. Something else we have in
common is that we have an anus that is, get this, in a
different place than our mouth. This separation is pretty key, because it means that we
as animals are basically built around a tube, a digestive tract, with a mouth at one end
and an anus at the other. The process of forming this
tract is called gastrulation, and it's kind of a big deal. So when we left our little
blastula, it was still just hanging out, a little
round, hollow ball of cells. Gastrulation begins when an
indentation starts to form at a single point on the blastula. This place on the blastula
that starts to invaginate or fold in on itself is
called the blastopore. Now, for animals whose mouth
and anus are the same thing, this is where the development stops, which is why they only have one
hole for all their business. But in everything else,
the invagination continues until the indentation makes its way all the way through and
opens on the other side, creating what is essentially
a hollow bead made of cells. Now we have a gastrula. Now, two different things
can happen at this point, depending on what kind of
animal this is going to be. It could either be an animal whose mouth is the orifice that's
formed by the blastopore called a protostome, or one
whose anus is the structure that's created by the blastopore, and that's called a deuterostome. So guess which one you are? Write it down, I wanna see your guesses. Chordates, that is to say,
all vertebrates and a couple of our relatives like
starfish, are deuterostomes, meaning that we were once just a butt hole attached to a little wad of cells, and that includes you, and me. Congratulations! And hopefully you're
getting the idea here. The formation of the digestive tract is the first thing that
happens in the development of an animal, and it happens
to every living thing, whether it's going to be a tardigrade or a polar bear or a T-Pain. The miracle of life! Now, so far, the little
hollow bead of cells is basically two layers of tissue thick, an outer layer called the ectoderm and an inner layer called the endoderm. And these are called your germ layers. For those organisms that
stop developing at this point with that classy mouth-anus combo, they only get two germ layers. They're called diploblastic,
and they were born that way. It's totally okay. But for us more complex animals
whose mouths are separate from our anuses, we develop
a third layer of tissue, making us triploblasts. Here, the ectoderm is going to end up being the animal's skin and nerves and spinal cord and most of its brain, while the endoderm ends up
forming the digestive tract, the esophagus and stomach
and colon and stuff, and in addition, some of
the cells start breaking off between the endoderm and the ectoderm and form another layer
called the mesoderm. These cells will eventually
end up as the muscles and the circulatory system
and the reproductive systems, and in the case of
vertebrates, most of the bones. So what's our embryo looking like now? Awesome. From here, this little guy
is gonna go on to fulfill his destiny as a ladybug
or a walrus or whatever. Now this seems to be a
great time to take a look at a completely disproven theory that biologists hold in
the highest contempt, but which is actually a kind of useful way to think about the way that
an animal embryo develops into a fully-formed animal. Plus, it makes for a great Biolo-graphy. (playful piano music) Back in the mid-1800s, a German zoologist named Ernst Haeckel tried to prove what we now refer to as
recapitulation theory. Basically, and this is not basic at all, recapitulation theory states that ontogeny recapitulates phylogeny. (Hank whimpers confusedly) In other words, ontogeny, or the growth and
development of an embryo, recapitulates or sums up phylogeny, which is the evolutionary
history of a species. So this means for instance
that a human embryo over the course of its development will go through all of the
hundreds of millions of years worth of evolutionary steps that it took for a single-celled organism to evolve into a fully tricked-out person. Haeckel was a contemporary of Darwin, and On the Origin of Species
made a giant impression on him, especially a section of it that notes how cool it is that all vertebrate embryos look pretty similar to one another, regardless of whether they're
mammal or bird or reptile. Darwin, however, cautioned that this probably wasn't a very good way of reconstructing the
history of evolution. He just thought it meant that
the embryological similarities were evidence of common
ancestry between species. Well, Haeckel was kind of a spaz, and he definitely heard the
first part of Darwin's idea, but not the rest, so Haeckel
jumped onto this idea and very quickly wrote a couple of books about how the development of an embryo mirrors the evolutionary
development of adults of a species, which is exactly what Darwin
said was not happening. Anyway, Haeckel did spend a
lot of time looking at embryos and observed that the slits
in the neck of a human embryo resemble the gill slits of
fish, which he took to mean that we must have at one point
had a fish-like ancestor. He drew tons of figures of
different animal embryos in different stages of
development to prove his theory, and his illustrations of embryos started to make their way into
textbooks all over the world. Haeckel is exactly the sort of person who really ticks other scientists off, because real science-loving
scientists like to sit and think about stuff, find out all
the problems with an idea before they start
publishing books about it, and here, Haeckel was firing
off volume after volume, and before long, all the
data he had collected convinced a bunch of other people, including Darwin, actually,
that he was onto something. But in the end, it turned out that Haeckel was kind of fiddling with
his drawings of embryos to make the data fit his
recapitulation theory instead of, you know, making
the theory to fit the data. But by that time, everybody
already knew about the theory, and if there's anything
harder than teaching people something, it's
un-teaching them something. So here we are, almost 150 years later, and we're still talking about
the recapitulation theory. But that might have less
to do with the stubbornness of a bad idea than it does
with the fact that it actually makes a kind of sense when
you don't take it literally. At some point in our
embryonic development, humans actually do have
gill slits like a fish and tails like a dog or a pig or a jaguar and webbed fingers and toes like a frog. So while it's not true that every zygote reenacts all of animal evolution, the way that an animal develops
does remind us that we are, in fact, related to other chordates, and we start off as just
a tube, a mouth at one end and an anus on the other, which
is pretty frickin' amazing.