Main content
Biology library
Course: Biology library > Unit 36
Lesson 1: Crash Course: Biology- Why carbon is everywhere
- Water - Liquid awesome
- Biological molecules - You are what you eat
- Eukaryopolis - The city of animal cells
- In da club - Membranes & transport
- Plant cells
- ATP & respiration
- Photosynthesis
- Heredity
- DNA, hot pockets, & the longest word ever
- Mitosis: Splitting up is complicated
- Meiosis: Where the sex starts
- Natural Selection
- Speciation: Of ligers & men
- Animal development: We're just tubes
- Evolutionary development: Chicken teeth
- Population genetics: When Darwin met Mendel
- Taxonomy: Life's filing system
- Evolution: It's a Thing
- Comparative anatomy: What makes us animals
- Simple animals: Sponges, jellies, & octopuses
- Complex animals: Annelids & arthropods
- Chordates
- Animal behavior
- The nervous system
- Circulatory & respiratory systems
- The digestive system
- The excretory system: From your heart to the toilet
- The skeletal system: It's ALIVE!
- Big Guns: The Muscular System
- Your immune system: Natural born killer
- Great glands - Your endocrine system
- The reproductive system: How gonads go
- Old & Odd: Archaea, Bacteria & Protists
- The sex lives of nonvascular plants
- Vascular plants = Winning!
- The plants & the bees: Plant reproduction
- Fungi: Death Becomes Them
- Ecology - Rules for living on earth
© 2023 Khan AcademyTerms of usePrivacy PolicyCookie Notice
The excretory system: From your heart to the toilet
Hank takes us on the fascinating journey through our excretory system to learn how our kidneys make pee. Created by EcoGeek.
Want to join the conversation?
- Why is it not just called the urinary system in this video? The colon isn't included, after all, and normal biology textbooks call it the urinary system. Is there a subtle difference?(14 votes)
- the colon is part of the excretory system. The excretory and the defaecatory systems are not to be interchanged. So, the term urinary system is more appropriate than the term excretory system(8 votes)
- If we're not Kilometers/Miles how does most of our body parts fit inside us?
(For example, our DNA, that thing is MILES and MILES long, how does it even fit inside???)(12 votes)- Also DNA is very, very, very, very, very, very, very, very, very, etc. small. Small enough that we need powerful telescopes to get a look at them so that plus, as Andrew said, it being tightly coiled up leaves it in compact packages.(6 votes)
- What does homeostasis mean? I've heard it mentioned in several CrashCourse videos about all kinds of different systems. Is homeostasis an overarching term?(6 votes)
- The activities of the Sympathetic and Parasympathetic systems of the nervous system make up the process known as Homeostasis (Word Definition: the tendency toward a relatively stable equilibrium between interdependent elements, esp. as maintained by physiological processes.)(4 votes)
- i have seen people say that they gave drank their own urine is it possible to do that or are the chemicals in the urine to toxic to the body?(6 votes)
- Urine basically consists of water, salts and urea which contains amino acids which your body is trying to get rid of. The liver gets rid of excess amino acids (which if left to accumulate is highly toxic to the body) by removing the amine group from the amino acids which converts it to a safer and manageable product -urea- which allows it to safely pass through the kidneys for filtration. i.e. removal from the bloodstream.
Essentially, urine is safe to drink in little amounts. Drinking too much of your urine is kind of counter-intuitive in a way. Because your body is trying to rid itself of amino acids and by ingesting it back, gradually amino acid toxins will build up in your body and cause damage to your kidneys, a condition known as uremia which could lead to irreversible damage to your kidneys and may rvrn lead to death.
The takeaway guys here is, don't drink your urine.(4 votes)
- Can one be over hydrated?(6 votes)
- Yes. One can be over hydrated if one drinks more than just enough water that the body can handle. During over hydration one observes the following symptoms - headache, muscle weakness, seizures,
changes in mental state(confusion and laziness), unconsciousness etc. etc. It may also be caused by some liver disease(eg-cirrhosis), some kidney problem or some heart disease also.(1 vote)
- AtHank says that our kidneys are inefficient at filtering all that waste. But I think that there is probably a reason for this. If our kidneys filtered all of it then our bodies did not reabsorb and, then instead of only going to the bathroom two or three times a day, then we would be basically doing it all day. I mean, at 3:09, he does say 180 liters is filtered by your kidneys. Imagine peeing out that amount every single day. 3:26(3 votes)
- Nice observation. In that case probably we'd drink less water.
But that won' help. Would anything be reabsorbed?
Our cells would dehydrate very fast.(1 vote)
- if our excretory systems expel all the unwanted and harmful materials from our body, then why do people die of poisoning ? doesn't the poison get excreted ?(3 votes)
- It depends.
Forst of all everything is breaking down in the liver.
Sometimes people die because of bio-accumulation in their lives tissue.
I think you ask for acute poisoning?
Because the dose is too high to pass clearance and it already acts before it reaches the final destination.
Remember that dose makes any substance toxic, not the chemical nature of that substance.(1 vote)
- What would happen if all of your stomach acid dissappeared?(2 votes)
- If all your stomach acid disappeared and you couldn't make more you'd be in big trouble. Since stomach acid (HCl) unravels proteins to be snipped apart by enzymes, without it you would be severely malnourished or even die. Also it would increase the risk of disease since the HCl helps kill disease so it can't enter the body.(2 votes)
- is the excretory system the urinary system or does it contain other organs too?(2 votes)
- The excretory system is also known as the urinary system. This consists of mainly the kidney organ .The other wastes (faeces) are a by-product of the digestive system.
So to answer your question, the excretory system only consists of the kidney, ureters, urinary bladder and the urethra.(1 vote)
- When the body disposes of unwanted waste it is the digestive system and what other system that does this?(1 vote)
- respiratory system excretes co2
digestive system excretes faeces
skin excretes sweat and salts
urinary system excretes urea in urine(2 votes)
Video transcript
- One of the coolest and
most important things that our bodies do is maintain
this thing called Homeostasis. It's a regulation of the
stable internal environment no matter where we are
or what we're doing. After all, we put our bodies through a lot every single day, we're always adding food and liquid and chemicals. We're constantly changing temperature and our level's activities but our bodies can roll with it, it's
like no big deal for them. All of our organ systems have some hand in maintaining homeostasis,
I mean it's basically the thing that makes us not dead. But the excretory system AKA the urinary system, which includes the kidneys, the ureters, the bladder and the urethra is the star quarterback of the homeostasis team, that's because your excretory system is responsible for maintaining the right levels of water and dissolved substances in your body. This is called Osmoregulation and it's how our bodies get rid of
the stuff we don't need like byproducts and metabolism food while also making sure that
we don't get dehydrated. It's the body's greatest balancing act and your body is doing it right now ans all of the time as
long as you're not dead. (upbeat music) As with other organ
systems, we've talked about not all excretory systems in the animal kingdom are created equal. Different animals excrete
wastes different ways based on their evolutionary history, what environments they live in, and what their hobbies and interests are, these factors all influence how an
animal regulates water and most metabolic waste needs to be dissolved in water in
order to be excreted. The problem is a main byproduct of metabolizing food is
ammonia, which comes from breaking down proteins
and it's pretty toxic so depending on how
much water is available to an animal and how easy it is for the animal to lug a bunch of
water around inside it. Animals convert this ammonia
into either urea or uric acid. Mammals like us as well as amphibians and some marine animals like sharks and sea turtles convert ammonia into urea, a compound made from combining ammonia and carbon
dioxide in their livers. The advantage of urea is
its very low toxicity. It can hang out in your
circulatory systems for a while with no ill effects but you have to have some
extra water available to dissolve it and get rid of it. This isn't such a tall order, really. I mean peeing isn't a huge inconvenience. I mean is it, it's not for me anyway. Well, it would be though
if you were a bird or an insect or a lizard
living in the desert. Animals that have to
be light enough to fly or don't have a bunch of spare water hanging around convert ammonia into uric acid, which can be excreted as kind of paste, so not a
lot of water is needed. Using bird poop, if you haven't taken a close look, next time do that, just look. The white stuff in the bird droppings is actually the uric acid-y pee and the brown stuff is the poop. So now that we've established what is and what is not bird poop, let's get down to the brass tacks of how humans get all this urea out of our blood and into our toilets. The excretory system
starts with the kidneys. The organs that do all the heavy lifting from maintaining those levels of water and dissolved materials in our bodies to controlling our blood pressure. And even though they do an amazing job I'm not bad-mouthing your kidneys here. The way that they do it is frankly a little bit janky and inefficient. They start out by filtering a bunch of fluid and the stuff dissolved in the fluid out of your blood, and then they basically reabsorb 99% of it back before sending that 1% on its
way in the form of urine. Seriously, 99% gets reabsorbed. On an average day your kidneys filter out about 180 liters of fluid from your blood, but
only 1.5 liters of that ends up getting peed out, so most of your excretory system is
dedicated to excreting. It's dedicated to reabsorbing. But the system works obviously. I'm still alive, so we
can't argue with that. And now it is time to get into the nitty-gritty details of how your kidneys do all of this
and it's pretty cool. But there's lots of weird
words, so get ready. Your kidneys do all this work using a network of tiny filtering
structures called nephrons. Each one of your mango sized kidneys has about a million of them, if you were don't do this bit if you were to unravel all of your nephrons and put them end to end they would
stretch over 80 kilometers. This is where all the
crazy action happens. So to understand how they
work, we're just gonna follow the flow from
your heart to the toilet. Blood from the heart
enters the kidneys through renal arteries and just so you know whenever you hear the word renal it means we're dealing with kidney stuff. As the blood enters, it's forced into a system of tiny
capillaries until it enters a tangle of porous capillaries called the glomerulus, this is the starting point for a single nephron, the pressure in the glomerulus is high enough that it squeezes some of the
fluid out of the blood. About 20% of it, and into a cup-like sack called the Bowman's capsule. The stuff that gets squeezed out is no longer blood, it is
now called filtrate. It's made up of water, urea, some smaller ions and molecules like
sodium, glucose and amino acids, the bigger
stuff in your blood like red blood cells
and the larger proteins they don't get filtered,
now the filtrate is ready to be processed, from the Bowman's capsule it
flows into a twisted tube called the proximal convoluted tubule which means the tube near the beginning and that is all windy, why are
we so bad at naming things. Anyway, this is the first of two convoluted tubules in the nephron and these along with other tubules we're talking about are where the
osmoregulation takes place. With all kinds of tricked
out specialized pumps and other kinds of active
and passive transport they reabsorb water and dissolve materials to create whatever balance your body needs at the time, and the proximal tubule, it's mainly organic solutes in the filtrate that are reabsorbed, like glucose and amino acids and other important stuff that you wanna hang on to. But it also helps to recapture some sodium and potassium and water
that we're gonna want later. From here, the filtrate enters the loop of Henle, which is a long hair pin shapred tubule
that passes through the two main layers of the kidney. The outermost layer is the renal cortex. That's where the glomerulus and the Bowman's capsule and both
convoluted tubules are and the layer beneath
that is the renal medulla which is the center of the kidney. Cortex, by the way, is Latin for tree bark so whenever you see it in biology know that it's the outside of something. Medulla on the other hand
meaning marrow or pith so you know that it's the inside just to help you remember this stuff. But before we take a tour of this amazing loop, I have to
do a couple of things. First, go pee, 'cause this is, you know. And second, a Biolo-graphy,
so I'll be right back. (playful piano music) The loop of Henle was discovered by 19th century german
physician and anatomist Friedrich Gustov Jakob
Henle, and I'm pretty sure it was just one of those guys that you can't gross out 'cause he spent most of his career dissecting kidneys and eyeballs and brains and also seemed to be a huge fan of mucus and pus. He was by far the most important anatomist of his time, his three volume Handbook of Systematic Human Anatomy was recognized as the definitive anatomy
textbook of its day and was famous for its
exquisite attention to detail, and its intricate,
even beautiful illustrations. Not only did Henle
discover the loop of Henle arguably the lynch pin of
kidney function in mammals. He was also an early adopter of the wildly unpopular germ theory of disease. His student, Robert
Koch is considered to be one of the founders of microbiology and the two worked together to formulate the Henle-Koch Postulates, which today remain the four conditions
that must be met to establish a causal relationship between a microbe and a disease. Henle taught the world so much about the human body that there are right no within you no fewer than nine features that bear has named. From the Henle's Fissures between the muscle fibers of your heart to the Crypts of Henle, which are microscopic pockets in the whites of your eyes. Also the name of my Cradle
of Filth cover band. Alright, so review time,
we've squeezed some filtrate out of the blood and reabsorbed some of the important organic
molecules we wanna keep but most of the reabsorption action happens here in the Loop of Henle which does three really important things. One, it extracts most of
the water that we need from the filtrate as it
travels down to the medulla. Two, it pumps out the
salts that we wanna keep on the way back to the cortex. And three, in the
process of doing all that it makes the medulla
hypertonic or super salty relative to the filtrate, creating a concentration gradient that will allow the medulla to
draw out even more water one last time from the filtrate before the final journey
to the toilet begins. It's complicated, and again kind of janky but it's what allows us
mammals to create urine that's as concentrated as necessary using only the amount of water that our bodies can spare at the time. So first, filtrate starts
going down the loop and the thing to know
here is that the membrane is highly permeable to
water, not so much to salt or anything else, mainly water. Now compare to the filtrate the tissue of the medulla is already pretty salty and as the filtrate
processes, the surrounding tissue becomes increasingly hypertonic. The farther down you
go the saltier it gets. So applying everything that we've learned about osmosis, you know that as the filtrate moves along
it loses more and more water through the membrane, by the time the filtrate gets to
the bottom of the loop it's highly concentrated, and now the filtrate enters the
ascending end of the loop and here it's basically
the same but in reverse. The membrane is not permeable to water and instead it's lined with channels that transport ions like sodium,
potassium, and chlorine and because the filtrate
is so concentrated now it's actually hypertonic compared to the fluid outside of the medulla. So as it ascends, huge
amounts of salts start flowing out of the
filtrate, which makes the renal medulla really really really salty. This salty medulla also
creates a concentration gradient between the
medulla and the filtrate which we're gonna need in
the final step of pee making. But first, once the filtrate is back up in the cortex and out of the loop it enters the second of
our convoluted tubules called the distal convoluted tubule or farther away curly tube, while the first tubule worked mostly in the reabsorbing of organic compounds in the filtrate, here the focus is on regulating levels of
potassium, sodium, and calcium. This work is mainly done by pumps and hormones that regulate
the reabsorption process. By the time it's done, we have finally taken everything we want to keep out of the filtrate,
so now it's mainly just excess water, urea, and
other metabolic waste. This stuff all gets dumped
into collecting ducts that channel it back
down to the center of the kidney, the medulla, and remember the medulla is super salty, right? Now more hormones kick in that tell the collecting ducts how porous
to make their membranes. If the membranes are made very porous more water is absorbed into the medulla which makes the urine, yes, we can start calling it urine now,
even more concentrated. And here's a fun fact, if you've ever had one drink too
many, you might have noticed that you start to pee a lot and your pee is clear, that's because alcohol interferes with these hormones especially one called
anti-diuretic hormone which tells the collecting ducts to be very porous so that you
reabsorb most of the water. With those hormones all confused and out of commission you just start peeing out all kinds of water which also means you're getting dehydrated which means you're officially on a one way trip to hangover city so now you know why that happens. Now, at this point the urine leaves both kidneys and flows down to the urinary bladder by tubes called ureters. Once in the bladder, the
urine just sits around waiting for us to decide when it's time to find a bathroom,
and when that time comes the little sphincter muscle relaxes and releases the urine from the bladder into a tube called the urethra which empties out wherever you point it. So that's how your excretory system works and that's basically how
it works for most mammals although some modifications are made based on again where they
live and what they do. For instance, kangaroo rats, which are tiny and adorable and live in the desert have the most concentrated urine of any animal anywhere because
it can't spare the water. So it has a very very long loop of Henle that reabsorbs most of the
water from the filtrate. On the other end of the
spectrum we have the beavers who have very short loops of Henle because they're like water reabsorption sh-mod-er re-ad-smorp-sion,
do you see what I do all day? So now you know the true origins of pee.