Main content
Biology library
Course: Biology library > Unit 36
Lesson 1: Crash Course: Biology- Why carbon is everywhere
- Water - Liquid awesome
- Biological molecules - You are what you eat
- Eukaryopolis - The city of animal cells
- In da club - Membranes & transport
- Plant cells
- ATP & respiration
- Photosynthesis
- Heredity
- DNA, hot pockets, & the longest word ever
- Mitosis: Splitting up is complicated
- Meiosis: Where the sex starts
- Natural Selection
- Speciation: Of ligers & men
- Animal development: We're just tubes
- Evolutionary development: Chicken teeth
- Population genetics: When Darwin met Mendel
- Taxonomy: Life's filing system
- Evolution: It's a Thing
- Comparative anatomy: What makes us animals
- Simple animals: Sponges, jellies, & octopuses
- Complex animals: Annelids & arthropods
- Chordates
- Animal behavior
- The nervous system
- Circulatory & respiratory systems
- The digestive system
- The excretory system: From your heart to the toilet
- The skeletal system: It's ALIVE!
- Big Guns: The Muscular System
- Your immune system: Natural born killer
- Great glands - Your endocrine system
- The reproductive system: How gonads go
- Old & Odd: Archaea, Bacteria & Protists
- The sex lives of nonvascular plants
- Vascular plants = Winning!
- The plants & the bees: Plant reproduction
- Fungi: Death Becomes Them
- Ecology - Rules for living on earth
© 2023 Khan AcademyTerms of usePrivacy PolicyCookie Notice
Big Guns: The Muscular System
Hank tells us the story of the complicated chemical dance that allows our skeletal muscles to contract and relax. Created by EcoGeek.
Want to join the conversation?
- okay so when I'm lying down on my bed on my elbows, after a while my arm starts to get numb why?(13 votes)
- This is not really about muscles, because when you lie on your elbows the blood vessels that move blood to your arm are blocked so your arm is numb because of the lack of blood to the cells.(12 votes)
- When your triceps relax your biceps contract and vice versa. Does this mean you are constantly exersizing without even knowing it? If so will this make you tired and make you hungry? Or is it just like your heart where it burns calories without making you sleepy?(10 votes)
- Great question!
If you completely relax your arm, your not pulling up nor down. So your not straining any of those muscles.
Did you know that we can burn calories from playing video games, or lounging around on the couch? Yeah, your blood will pump as long as you live, your heart will beat infill you die. There for mussels are always moving in your body. And yes! Calories are your fuel system, when you start to lose calories, by exercising, your body will sooner or later need more, like a train and coal. Your heart will make you sleepy when it burns calories. It only that we are so used to it it has no affect. If our hearts sped up we would get tired quicker. Think of if you sit lay down and then switch the TV over to a zombie horror show. Due to the panic and fear hormones your heart will pump faster. That's why at the end of intense movies you might feel tired a bit after. Or if you play a video game. That's why after wards in a video game you feel fine for a bit, then you feel really cranky and tired.(8 votes)
- Are muscles stuck to your bones? If they are then how?(7 votes)
- Yes. They are connected to the bone by tendons. A Tendon is a tough, flexible band of fibrous connective tissue .(9 votes)
- Are tendons able to regrow if broken or torn?(5 votes)
- generally in humans yes, but tendons arent "broken" just torn. If a tendon is damaged it will do like most other parts in the human body it will regrow but with the possibility of heavy scar tissue occuring in the previously damaged area of tendon. This principal varies species to species.(8 votes)
- Why are cells so small? I mean, couldn't they be bigger?(3 votes)
- The other answers are good, but I would also like to add this example. Imagine a cell in like a city. A city needs to bring food to the stores, and garbage trucks need to take the garbage out of the cities. If humans lived in one big city, it would take forever for the food trucks to get food to the center, and for the garbage trucks to get out. Instead we live in many different cities, so food can be trucked in from the farms surrounding the city, and the garbage can be sent to the landfill.
Before trucks were invented a city the size of new york would have been impossible since it would take to long to remove waste and bring food in, so cities generally stayed smaller than a million people.
So a cell is like a city in this respect, we have billions of cells instead of a few large ones(5 votes)
- why doesn't the cardiac muceles get cancer(2 votes)
- Heart cancer (primary cardiac tumor) is cancer that arises in the heart. Cancerous (malignant) tumors that begin in the heart are most often sarcomas, a type of cancer that originates in the soft tissues of the body. The vast majority of heart tumors are noncancerous (benign).
Heart cancer is extremely rare. For example, one study reviewed more than 12,000 autopsies and found only seven cases of primary cardiac tumor. At Mayo Clinic, on average only one case of heart cancer is seen each year.
Although still rare, most cancers found in the heart have come from elsewhere in the body. Cancers that begin near the heart, such as lung cancer, can grow to involve the heart or the lining around the heart (pericardial sac). Or cancer can begin elsewhere in the body and spread to the heart through the bloodstream. Cancers that may affect the heart include breast cancer, kidney cancer, lung cancer, leukemia, lymphoma and melanoma, among others.
Cancer can affect the heart in other ways, as well. A rare type of cancer known as carcinoid tumor at times produces hormones that can damage heart valves.
Cancer treatments also can damage the heart. Cancer treatments linked to heart problems include several types of chemotherapy drugs, certain targeted therapy drugs, radiation therapy aimed near the heart, and hormone therapy. Some heart problems are detected during treatment, while others may not become apparent for many years after treatment. In many cases, the heart damage is reversible, though some types of heart damage can be permanent.
http://www.mayoclinic.org/heart-cancer/expert-answers/faq-20058130(3 votes)
- How does all of thisI happen so fast? I mean, it seems like once you contract it, it wouldn't relax very fast.(1 vote)
- This is all done on a molecular level. It is small, but it is fast because it is small. The contractions don't contract much, but when you have 100,000 contractions at once, you get the picture.(4 votes)
- Can the bicep and the tricep of the same arm contract or relax at the same time?(2 votes)
- CarlBiologist is right that generally they don't contract/relax at the same time. But, they can be forced to contract at the same time. Tetanus is both the name of this condition and the common name for the bacteria which can cause it.(2 votes)
- what causes muscle spasms(3 votes)
- There are different reasons for muscle spasms. These reasons include when muscles are over used and tired or even over stretched. The muscle cell runs out of energy and fluid and this results in a force full contraction, which is called a spasm.(2 votes)
- What makes the difference between lean muscles and heavy muscles made from like hank working out at the beginning of the video?(3 votes)
- Smooth muscles are differently shaped, they have usually one nucleus and contract differently - affected by parasympathetic. Smooth muscles contract slower.
Skeletal muscles have multiple nuclei, innervated by sympathetic. They contract much faster and have shorter contractions.(1 vote)
Video transcript
(grunts) - Well, hello there. You caught me while I was working out. Last time I was lifting weights doing a Crash Course episode,
(electronic clicking) also, the last time I was lifting weights, we were talking about how
all of this is possible because of cellular respiration, the process our cells use to get and store energy from
the food that we eat. Remember that? Good times. As it happens, a lot
of what we learned then is also really helpful in
understanding the organ system that we use to do our
gun-blasting and walking and fork and knife operating and parkour and playing Assassin's Creed and, you know, like, moving around. I'm talking about your muscles, of course, and you wouldn't be able to move them without the help of that same molecule that your cells use to
get all their jobs done. Good old adenosine triphosphate. Now, your muscles may be
your body's most obvious moving parts, but as with all things that are truly worth learning about, this system is both way more complex and way more awesome
than it first appears. Yeah! Why? Because of chemistry! (energetic indie rock music) When you think of
muscles, your mind usually goes straight to the guns
there, but you really have three different types
of muscle in your body, you have the cardiac muscle, your heart muscle, which is different from all other sorts
of muscle in your body. And then you have smooth muscle, which is responsible for carrying out most of your involuntary processes like pushing food through
your digestive tract and pushing blood through your arteries, important stuff there. And then there's the muscles
that you're most familiar with, the skeletal muscles. Your gluteus maximus, your masseter, which is, you know, important
for chewin' your Hot Pockets, the abductor pollicis
brevis right at the base of your thumb, AKA your
video game muscles, that's important for the Assassin's Creed. Just some of the 640
skeletal muscles you have! Those muscles, like all of your muscles, are only good at two things. Contracting, to become shorter, and relaxing back out
to their resting length. That's all muscles do, they
contract and they relax. Pretty amazing that you can
make a ballerina out of that. If you were to peel back my skin and take a look at one of my muscles, please don't do that, but if you did, you'd see that it thickens in the middle at what's called the muscle belly, and then it tapers off on
either end into a tendon. Tendons are made of fibrous proteins, mostly collagen, that connect
the muscle to the bone. Just a side note, ligaments,
similar to tendons, but instead they connect
bones to other bones. The muscle tendon combos stretch across one or more joints, in this case, it stretches across my elbow so that one bone can move in
relation to the other bone. So I just moved my arm and
now I'm moving my mouth, and I'm basically movin'
my whole body right now, and the question is, how am I doing this? How am I moving all of these things in all of the sort of amazing, fluid ways? How am I able to do that at all? Unfortunately, it's kind of complicated, but it's wonderful and amazing, so it will be worth it in the end. First, we need to understand the anatomy of a skeletal muscle, which includes many, many layers of long, thin strands. Think about all of
skeletal muscles as a rope, it's made of smaller ropes
that are bundled together and then those ropes are
made of bundles of thread and those threads are made
of tiny, tiny filaments. This structure is what makes meat stringy, 'cause after all, meat is just muscle. This chicken breast is or was the pectoralis major muscle of a chicken. It connected to the bird's
sternum or breast bone to the humerus in its wing, and sometimes I feel like chickens have bigger pecs than I do. This is crazy. When you peel this muscle apart, you see that it's really made
up layers of thin strings, these are muscle fascicles
(electronic clicking) and each fascicle is made up of lots and lots of smaller strands. These, we can't see. They're called muscle fibers,
(electronic clicking) and these are the actual muscle cells. Now, because muscle cells
perform such a specialized job, they're not like your run
of the mill somatic cells, for starters, they each
have multiple nuclei. That's because each muscle cell is actually formed by by a bunch of cells, somewhat like stem cells called progenitor cells fusing together. Muscle cells are basically just bundles of complex protein
strands, and since nuclei are essential for the
protein-making process, muscle cells need lots of nuclei to make all the protein they need. From here on you'll notice, by the way, that a lot of the stuff I'm talking about starts with the prefix myo- or sarco- from the Greek words for
muscle or flesh respectively. Whenever you see those terms in biology, you know you're probably
in muscle country. For instance, those protein strands that I just mentioned that
make up a muscle cell are called myofibrils, and each one is divided lengthwise into
segments called sarcomeres. This is where the action
happens, my friends, because it's the sarcomere
that will actually do the contracting and relaxing to create the muscle movement. Each muscle cell has tens
of thousands of these guys and they all contract
together to make you do stuff. And this contracting and relaxing occurs through this really cool
and complex interaction between two different kinds of protein strands called myofilaments. One myofilament is the protein actin, which are skinny strands that attach to either one of the two
ends of the sarcomere, and the other is myosin, which is thicker and studded with these
little golf club shaped knobs along it called heads. Inside a sarcomere, these
proteins occur in layers with a thick strand of myosin floating between several strands of actin. Just how many strands of actin depends on on the muscle we're talking about, in this case, let's just
that there are four. Two sitting on top and
two sitting on the bottom. Now, when the muscle cell is at rest, none of these strands
are touching each other, but they really desperately want to, they're like middle school
students at a formal dance. The myosin in particular
wants nothing more than to reach its little heads up and do some heavy petting with the actin. The chemical dance that
allows this to happen is one of the sexiest things
that goes on in your body other than, like, sex. And it's known as the
sliding filament model of muscle contraction, which reminds me of an interesting story. (ragtime piano music) I mentioned last week
that we didn't really have even a passing understanding
of the human skeleton until the 1500s, which seems
kinda tardy to the party to me, but that's nothing compared with this. We didn't figure out how
muscles worked until 1954. In 1954, two teams of researchers
independently discovered that the sliding filament
model is how muscles contract. And as luck would have it,
two of the four scientists who made this discovery were named Huxley. We've already discussed
Thomas Henry Huxley, the father of comparative
anatomy, and Darwin's bulldog. Well, his grandkids were all
awesome at something too, like Aldous Huxley, who wrote
the novel Brave New World, Julian Huxley, who was
central to the development of modern evolutionary theory, and Andrew Fielding Huxley. Andrew Huxley was a physiologist who, with colleague Rolf Niedergerke, set out to solve the
muscle-contracting mystery. Until the early 1950s,
all we knew was that myofibrils were full of protein strands. At that time, most people thought that these strands simply changed shape and shortened, like how a spring recoils after it's been stretched out. And by the 1950s, we'd learned pretty much everything we could about muscle cells by using conventional microscopes. So, Huxley and Niedergerke
actually designed and built a new microscope. A tricked-out kind of
interference microscope which uses two separate beams of light. And with that, they found
that during contraction, some protein strands kept
their lengths the same while others around them contracted. But, at the very same time, British biophysicist Jean Hanson and Hugh Esmor Huxley,
an American biologist, who had no relation to the
famous British Huxleys, were using another newfangled
tool, the electron microscope. Using that, they observed
that muscle fiber was composed of thick and thin filaments, the myosin and the actin, and that the filaments
were arranged in such a way that they could slide across each other to shorten the sarcomere. So, in two separate papers
published the same day, in the same journal, two teams proposed that muscle contractions were caused by the movement of one
protein over another, I guess an idea whose time had come. Except it's not that simple. To understand how the
sliding filament model works, the first thing to keep in mind is that in addition to
needing a bunch of protein, muscle cells need to make lots of ATP. ATP, you remember, creates the energy for almost everything your body does, yes, that goes for
muscle movement as well. Another thing to remember
is that some proteins can change shape when they come into contact with certain ions. Like, we've seen that with
the sodium potassium pumps, for instance, those pumps are proteins that can accept sodium
ions outside a cell, and then they change shape to
release them inside a cell, and also suddenly at the same time, they become able to accept potassium ions. These shape-changers are house cells, get a lot of the day to
day job of living done. In a sarcomere, it's
calcium ions that change the shape of some of the proteins so that the myosin can
finally have its way and grope the actin strands all around it. Then, it'll drag those actin strands toward each other, causing
the sarcomere to contract. But when a muscle cell is at rest, there are a couple of things that keep this groping from happening. The first is a a set of two proteins wrapped around the actin. They're called tropomyosin and troponin, and together, they act
as a kind of insulation, let's just continue our
middle school metaphor, they're the chaperones. They protect the actin from groping. At this point, each little
head on the myosin strand has the wreckage of a spent
ATP molecule stuck to it, that's ADP and a phosphate, and the energy from that broken ATP is
already stored inside the head. So yeah, the myosin has a
lot of pent-up frustration. Now, while the muscle cell is resting, it's preparing a stockpile of calcium ions that it will use as a
trigger when it's go time. This is done by a specialized version of the smooth endoplasmic reticulum called the sarcoplasmic reticulum or SR. It's wrapped around each sarcomere and it's studded with calcium pumps. These pumps are constantly burning up ATP to create a high concentration of calcium inside the SR, and of course, whenever you create a
concentration gradient, you know it's gonna get used. So now we're ready for a
muscle contraction to start, but what starts it? Well, stimulus, of course, from a neuron. Muscles are activated by motor neurons (electronic clicking)
and each sarcomere has a motor neuron nearby. When a signal travels down the neuron to the neuron synapse
with the muscle cell, it triggers a release of neurotransmitters which in turn set off
another action potential inside the muscle cell. That action potential continues along the muscle cell's membrane and then flows inside
it along special folds in the membrane called T-tubules. When that signal reaches
the SR inside the cell, bingo, the SR's channels open wide and let all those
calcium ions diffuse down that concentration gradient. The calcium ions bind with
one of the chaperones, the troponin, which causes the troponin to rotate around the actin
and drag the tropomyosin out of the way, revealing all of those super hot binding
sites on the actin. With our chaperones
distracted, the myosin, it totally goes to town. It reaches all of those little tiny heads along along its length
to bind up with the actin and the excitement of that long-awaited precious contact finally
releases the energy that came from breaking that ATP molecule. This burst of energy causes the heads to suddenly bend toward the center of the sarcomere, pulling
the actin strands together and shrinking the sarcomere. In millions of sarcomeres
in hundreds of thousands of muscle cells, this
is what allows me to, like, lift my arms. You wouldn't think it
would be so complicated. Now, in order for the contraction to stop, you're gonna have to tear
those two proteins apart 'cause each myosin head is
really comfortable here, snuggling with its beloved actin. So, it'll take another
passing ATP molecule to attach to the head, which breaks off one of the phosphates
to release its energy as soon as they touch. That energy breaks the
myosin's bond with the actin and lowers the head, leaving it alone and frustrated once more. So, it's weird that
the energy from the ATP is actually used to make the muscle relax. But in fact, that's why
we get rigor mortis. When you're dead, there's no more ATP to make the muscle relax
and all the calcium ions diffuse out of the sarcoplasmic reticulum, causing the muscles to
enter their resting state, which is contracted. But, you're not dead yet,
so let's wrap this up. When the myosin and actin
are being separated, the sarcoplasmic reticulum is hard at work pumping all of the calcium
ions back inside it and storing 'em up for next time. That lets our chaperones come back, the troponin and the tropomyosin retake their positions
around the actin strands, resets the sarcomere for the
next impulse to come along. Chemistry! It makes it all possible
from blastin' your guns to my awesome dance moves!