If you're seeing this message, it means we're having trouble loading external resources on our website.

If you're behind a web filter, please make sure that the domains *.kastatic.org and *.kasandbox.org are unblocked.

Main content

Stages of transcription

An in-depth looks at how transcription works. Initiation (promoters), elongation, and termination.

Key points:

  • Transcription is the process in which a gene's DNA sequence is copied (transcribed) to make an RNA molecule.
  • RNA polymerase is the main transcription enzyme.
  • Transcription begins when RNA polymerase binds to a promoter sequence near the beginning of a gene (directly or through helper proteins).
  • RNA polymerase uses one of the DNA strands (the template strand) as a template to make a new, complementary RNA molecule.
  • Transcription ends in a process called termination. Termination depends on sequences in the RNA, which signal that the transcript is finished.

Introduction

What makes death cap mushrooms deadly? These mushrooms get their lethal effects by producing one specific toxin, which attaches to a crucial enzyme in the human body: RNA polymerase.1
Photograph of Amanita phalloides (death cap) mushrooms.
_Image modified from "Amanita phalloides," by Archenzo (CC BY-SA 3.0). The modified image is licensed under a CC BY-SA 3.0 license._
RNA polymerase is crucial because it carries out transcription, the process of copying DNA (deoxyribonucleic acid, the genetic material) into RNA (ribonucleic acid, a similar but more short-lived molecule).
Transcription is an essential step in using the information from genes in our DNA to make proteins. Proteins are the key molecules that give cells structure and keep them running. Blocking transcription with mushroom toxin causes liver failure and death, because no new RNAs—and thus, no new proteins—can be made.2
Transcription is essential to life, and understanding how it works is important to human health. Let's take a closer look at what happens during transcription.

Transcription overview

Transcription is the first step of gene expression. During this process, the DNA sequence of a gene is copied into RNA.
Before transcription can take place, the DNA double helix must unwind near the gene that is getting transcribed. The region of opened-up DNA is called a transcription bubble.
In transcription, a region of DNA opens up. One strand, the template strand, serves as a template for synthesis of a complementary RNA transcript. The other strand, the coding strand, is identical to the RNA transcript in sequence, except that it has uracil (U) bases in place of thymine (T) bases.
Example:
Coding strand: 5'-ATGATCTCGTAA-3' Template strand: 3'-TACTAGAGCATT-5' RNA transcript: 5'-AUGAUCUCGUAA-3'
In translation, the RNA transcript is read to produce a polypeptide.
Example:
RNA transcript: 5'-AUG AUC UCG UAA-3' Polypeptide: (N-terminus) Met - Ile - Ser - [STOP] (C-terminus)
Transcription uses one of the two exposed DNA strands as a template; this strand is called the template strand. The RNA product is complementary to the template strand and is almost identical to the other DNA strand, called the nontemplate (or coding) strand. However, there is one important difference: in the newly made RNA, all of the T nucleotides are replaced with U nucleotides.
The site on the DNA from which the first RNA nucleotide is transcribed is called the +1 site, or the initiation site. Nucleotides that come before the initiation site are given negative numbers and said to be upstream. Nucleotides that come after the initiation site are marked with positive numbers and said to be downstream.
If the gene that's transcribed encodes a protein (which many genes do), the RNA molecule will be read to make a protein in a process called translation.

RNA polymerase

RNA polymerases are enzymes that transcribe DNA into RNA. Using a DNA template, RNA polymerase builds a new RNA molecule through base pairing. For instance, if there is a G in the DNA template, RNA polymerase will add a C to the new, growing RNA strand.
RNA polymerase synthesizes an RNA strand complementary to a template DNA strand. It synthesizes the RNA strand in the 5' to 3' direction, while reading the template DNA strand in the 3' to 5' direction. The template DNA strand and RNA strand are antiparallel.
RNA transcript: 5'-UGGUAGU...-3' (dots indicate where nucleotides are still being added at 3' end) DNA template: 3'-ACCATCAGTC-5'
RNA polymerase always builds a new RNA strand in the 5’ to 3’ direction. That is, it can only add RNA nucleotides (A, U, C, or G) to the 3' end of the strand.
RNA polymerases are large enzymes with multiple subunits, even in simple organisms like bacteria. Humans and other eukaryotes have three different kinds of RNA polymerase: I, II, and III. Each one specializes in transcribing certain classes of genes. Plants have an additional two kinds of RNA polymerase, IV and V, which are involved in the synthesis of certain small RNAs.

Transcription initiation

To begin transcribing a gene, RNA polymerase binds to the DNA of the gene at a region called the promoter. Basically, the promoter tells the polymerase where to "sit down" on the DNA and begin transcribing.
The promoter region comes before (and slightly overlaps with) the transcribed region whose transcription it specifies. It contains recognition sites for RNA polymerase or its helper proteins to bind to. The DNA opens up in the promoter region so that RNA polymerase can begin transcription.
Each gene (or, in bacteria, each group of genes transcribed together) has its own promoter. A promoter contains DNA sequences that let RNA polymerase or its helper proteins attach to the DNA. Once the transcription bubble has formed, the polymerase can start transcribing.

Promoters in bacteria

To get a better sense of how a promoter works, let's look an example from bacteria. A typical bacterial promoter contains two important DNA sequences, the -10 and -35 elements.
RNA polymerase recognizes and binds directly to these sequences. The sequences position the polymerase in the right spot to start transcribing a target gene, and they also make sure it's pointing in the right direction.
Once the RNA polymerase has bound, it can open up the DNA and get to work. DNA opening occurs at the -10 element, where the strands are easy to separate due to the many As and Ts (which bind to each other using just two hydrogen bonds, rather than the three hydrogen bonds of Gs and Cs).
Bacterial promoter. The promoter lies at the start of the transcribed region, encompassing the DNA before it and slightly overlapping with the transcriptional start site. The promoter contains two elements, the -35 element and the -10 element. The -35 element is centered about 35 nucleotides upstream of (before) the transcriptional start site (+1), while the -10 element is centered about 10 nucleotides before the transcriptional start site. In this particular example, the sequence of the -35 element (on the coding strand) is 5'-TTGACG-3', while the sequence of the -10 element (on the coding strand) is 5'-TATAAT-3'. The RNA polymerase has regions that specifically bind to the -10 and -35 elements.
The -10 and the -35 elements get their names because they come 35 and 10 nucleotides before the initiation site (+1 in the DNA). The minus signs just mean that they are before, not after, the initiation site.

Promoters in humans

In eukaryotes like humans, the main RNA polymerase in your cells does not attach directly to promoters like bacterial RNA polymerase. Instead, helper proteins called basal (general) transcription factors bind to the promoter first, helping the RNA polymerase in your cells get a foothold on the DNA.
Many eukaryotic promoters have a sequence called a TATA box. The TATA box plays a role much like that of the -10 element in bacteria. It's recognized by one of the general transcription factors, allowing other transcription factors and eventually RNA polymerase to bind. It also contains lots of As and Ts, which make it easy to pull the strands of DNA apart.
The promoter of a eukaryotic gene is shown. The promoter lies upstream of and slightly overlaps with the transcriptional start site (+1). It contains a TATA box, which has a sequence (on the coding strand) of 5'-TATAAA-3'. The first eukaryotic general transcription factor binds to the TATA box. Then, other general transcription factors bind. Finally, RNA polymerase II and some additional transcription factors bind to the promoter.

Elongation

Once RNA polymerase is in position at the promoter, the next step of transcription—elongation—can begin. Basically, elongation is the stage when the RNA strand gets longer, thanks to the addition of new nucleotides.
During elongation, RNA polymerase "walks" along one strand of DNA, known as the template strand, in the 3' to 5' direction. For each nucleotide in the template, RNA polymerase adds a matching (complementary) RNA nucleotide to the 3' end of the RNA strand.
RNA polymerase synthesizes an RNA transcript complementary to the DNA template strand in the 5' to 3' direction. It moves forward along the template strand in the 3' to 5' direction, opening the DNA double helix as it goes. The synthesized RNA only remains bound to the template strand for a short while, then exits the polymerase as a dangling string, allowing the DNA to close back up and form a double helix.
In this example, the sequences of the coding strand, template strand, and RNA transcript are:
Coding strand: 5' - ATGATCTCGTAA-3'
Template strand: 3'-TACTAGAGCATT-5'
RNA: 5'-AUGAUC...-3' (the dots indicate where nucleotides are still being added to the RNA strand at its 3' end)
The RNA transcript is nearly identical to the non-template, or coding, strand of DNA. However, RNA strands have the base uracil (U) in place of thymine (T), as well as a slightly different sugar in the nucleotide. So, as we can see in the diagram above, each T of the coding strand is replaced with a U in the RNA transcript.
The picture below shows DNA being transcribed by many RNA polymerases at the same time, each with an RNA "tail" trailing behind it. The polymerases near the start of the gene have short RNA tails, which get longer and longer as the polymerase transcribes more of the gene.
In the microscope image shown here, a gene is being transcribed by many RNA polymerases at once. The RNA chains are shortest near the beginning of the gene, and they become longer as the polymerases move towards the end of the gene. This pattern creates a kind of wedge-shaped structure made by the RNA transcripts fanning out from the DNA of the gene.
_Image modified from "Transcription label en," by Dr. Hans-Heinrich Trepte (CC BY-SA 3.0). The modified image is licensed under a CC BY-SA 3.0 license._

Transcription termination

RNA polymerase will keep transcribing until it gets signals to stop. The process of ending transcription is called termination, and it happens once the polymerase transcribes a sequence of DNA known as a terminator.

Termination in bacteria

There are two major termination strategies found in bacteria: Rho-dependent and Rho-independent.
In Rho-dependent termination, the RNA contains a binding site for a protein called Rho factor. Rho factor binds to this sequence and starts "climbing" up the transcript towards RNA polymerase.
Rho-dependent termination. The terminator is a region of DNA that includes the sequence that codes for the Rho binding site in the mRNA, as well as the actual transcription stop point (which is a sequence that causes the RNA polymerase to pause so that Rho can catch up to it). Rho binds to the Rho binding site in the mRNA and climbs up the RNA transcript, in the 5' to 3' direction, towards the transcription bubble where the polymerase is. When it catches up to the polymerase, it will cause the transcript to be released, ending transcription.
When it catches up with the polymerase at the transcription bubble, Rho pulls the RNA transcript and the template DNA strand apart, releasing the RNA molecule and ending transcription. Another sequence found later in the DNA, called the transcription stop point, causes RNA polymerase to pause and thus helps Rho catch up.4
Rho-independent termination depends on specific sequences in the DNA template strand. As the RNA polymerase approaches the end of the gene being transcribed, it hits a region rich in C and G nucleotides. The RNA transcribed from this region folds back on itself, and the complementary C and G nucleotides bind together. The result is a stable hairpin that causes the polymerase to stall.
Rho-independent termination. The terminator DNA sequence encodes a region of RNA that folds back on itself to form a hairpin. The hairpin is followed by a series of U nucleotides in the RNA (not pictured). The hairpin causes the polymerase to stall, and the weak base pairing between the A nucleotides of the DNA template and the U nucleotides of the RNA transcript allows the transcript to separate from the template, ending transcription.
In a terminator, the hairpin is followed by a stretch of U nucleotides in the RNA, which match up with A nucleotides in the template DNA. The complementary U-A region of the RNA transcript forms only a weak interaction with the template DNA. This, coupled with the stalled polymerase, produces enough instability for the enzyme to fall off and liberate the new RNA transcript.

What happens to the RNA transcript?

After termination, transcription is finished. An RNA transcript that is ready to be used in translation is called a messenger RNA (mRNA). In bacteria, RNA transcripts are ready to be translated right after transcription. In fact, they're actually ready a little sooner than that: translation may start while transcription is still going on!
In the diagram below, mRNAs are being transcribed from several different genes. Although transcription is still in progress, ribosomes have attached each mRNA and begun to translate it into protein. When an mRNA is being translated by multiple ribosomes, the mRNA and ribosomes together are said to form a polyribosome.
Illustration shows mRNAs being transcribed off of genes. Ribosomes attach to the mRNAs before transcription is done and begin making protein.
Image modified from "Prokaryotic transcription: Figure 3, by OpenStax College, Biology, CC BY 4.0.
Why can transcription and translation happen simultaneously for an mRNA in bacteria? One reason is that these processes occur in the same 5' to 3' direction. That means one can follow or "chase" another that's still occurring. Also, in bacteria, there are no internal membrane compartments to separate transcription from translation.
The picture is different in the cells of humans and other eukaryotes. That's because transcription happens in the nucleus of human cells, while translation happens in the cytosol. Also, in eukaryotes, RNA molecules need to go through special processing steps before translation. That means translation can't start until transcription and RNA processing are fully finished. You can learn more about these steps in the transcription and RNA processing video.

Want to join the conversation?

  • starky ultimate style avatar for user AlaaBaqer25
    What is the benefit of the coding strand if it doesn't get transcribed and only the template strand gets transcribed? Please answer asap. Thank you!
    (17 votes)
    Default Khan Academy avatar avatar for user
    • blobby green style avatar for user Daniel
      Having 2 strands is essential in the DNA replication process, where both strands act as a template in creating a copy of the DNA and repairing damage to the DNA. Additionally the process of transcription is directional with the coding strand acting as the template strand for genes that are being transcribed the other way.
      In the diagrams used in this article the RNA polymerase is moving from left to right with the bottom strand of DNA as the template. If the promoter orientated the RNA polymerase to go in the other direction, right to left, because it must move along the template from 3' to 5' then the top DNA strand would be the template.
      (26 votes)
  • duskpin ultimate style avatar for user Selena Hostetler
    Why does RNA have the base uracil instead of thymine?
    (4 votes)
    Default Khan Academy avatar avatar for user
    • piceratops ultimate style avatar for user Darmon
      To add to the above answer, uracil is also less stable than thymine. RNA molecules are constantly being taken apart and put together in a cell, and the lower stability of uracil makes these processes smoother. In DNA, however, the stability provided by thymine is necessary to prevent mutations and errors in the cell's genetic code. :)
      (35 votes)
  • leaf green style avatar for user gazar3049
    During DNA replication ,DNA ligase enzyme is used alongwith DNA polymerase enzyme so during transcription is RNA ligase enzyme also used along with RNA polymerase enzyme to complete the phosphodiester backbone of the mRNA between the gaps?
    (6 votes)
    Default Khan Academy avatar avatar for user
  • piceratops seed style avatar for user Emma Hong
    i heard ATP is necessary for transcription. Which process does it go in and where? (initiation, elongation, termination)
    (4 votes)
    Default Khan Academy avatar avatar for user
    • primosaur seedling style avatar for user nidanazar1
      ATP is need at point where transcription facters get attached with promoter region of DNA , addition of nucleotides also need energy durring elongation and there is also need of energy when stop codon reached and mRNA deattached from DNA. There for termination reached when poly Adenine region appeared on DNA templet because less energy is required to break two hydrogen bonds rather than three hydrogen bonds of c, G. transcription process starts after a strong signal it will not starts on a weak signals because its energy consuming process.
      (3 votes)
  • blobby green style avatar for user Hansika JS
    What about termination in eukaryotes?
    (4 votes)
    Default Khan Academy avatar avatar for user
    • blobby green style avatar for user Evan Ding
      Termination in eukaryotes is much more complex and varies depending on the gene and organism. But generally, as mentioned in the article, a polyadenylation signal is released, which attracts rna cleavage proteins (which also varies!) and cuts the mRNA off.
      (2 votes)
  • blobby green style avatar for user nguyebre
    Concerning Rho-independent termination, why does the RNA fold back onto itself after reaching the C-G rich region, I get the purpose of the stable bonds formed by C-G nucleotides, but I'm just confused about the folding.
    (2 votes)
    Default Khan Academy avatar avatar for user
    • piceratops ultimate style avatar for user FrozenPhoenix45
      If you had, say, a paper clip, and you stretched it out so the wire was straight, and then hold it by one end and press it into a wall, what would happen? The wire would bend back in on itself because it no longer has anywhere else to go in that direction, but its momentum forces it to go somewhere, making it bend in a different direction. I believe that is what occurs when the RNA hits the terminator.

      I hope this helped! Comment if you have any questions; I'll answer to the best of my ability.
      (5 votes)
  • blobby green style avatar for user mac mike
    so there are many promoter regions in a DNA, which means how RNA Polymerase know which promoter to start bind with. what triggers particular promoter region to start depending upon situation.
    (3 votes)
    Default Khan Academy avatar avatar for user
  • blobby green style avatar for user maria murcia
    Hi, very nice article. How may I reference it? I'm interested in eukaryotic transcription. Both links provided in 'Attribution and references' go to Prokaryotic transcription but not eukaryotic. Thank you
    (3 votes)
    Default Khan Academy avatar avatar for user
  • blobby green style avatar for user Hanna Rudnytska
    Do promoters and terminators get copied into the new transcript? Are they are part of the new RNA transcript after transcription has ended?
    (2 votes)
    Default Khan Academy avatar avatar for user
    • piceratops ultimate style avatar for user FrozenPhoenix45
      Promoters and terminators do not get copied into the new transcript. The promoter is there to tell the RNA to "get ready" and signal the start of the transcription site. The RNA binds to it, but does not copy it. The same is true of the terminator. It stops the RNA's momentum, letting it know that it needs to stop transcribing. In Rho-dependant reactions, I do not believe the terminator could be copied by the RNA anyway. So the answer to your question is no, the promoters and terminators are not copied.

      I hope this helped! Comment if you have any questions; I'll answer to the best of my ability.
      (3 votes)
  • blobby green style avatar for user Jazmine Aguilar
    According to my notes from my biochemistry class, they say that the rho factor binds to the c-rich region in the rho dependent termination, not the independent. Therefore, in order for termination to occur, rho binds to the region which contains helicase activity and unwinds the 3' end of the transcript from the template. However, if I am reading correctly, the article says that rho binds to the C-rich protein in the rho independent termination. I am still a bit confused with what is correct.
    (2 votes)
    Default Khan Academy avatar avatar for user