If you're seeing this message, it means we're having trouble loading external resources on our website.

If you're behind a web filter, please make sure that the domains *.kastatic.org and *.kasandbox.org are unblocked.

Main content


Hemoglobin and its role in the circulatory system. Created by Sal Khan.

Want to join the conversation?

  • blobby green style avatar for user Dan Ryan
    Still not sure why haemoglobin has it's lowest affinity for oxygen when it isn't bonded to any. Seems counter-productive to me. If there is no oxygen in a red blood cells, wouldn't it be better if the affinity is higher?
    (112 votes)
    Default Khan Academy avatar avatar for user
    • blobby green style avatar for user carter.m35
      I like to think of hemoglobin as the bus whose job is to get the oxygen to the body cells which are low on oxygen. Hemoglobin carries 4 oxygens and holds them the tightest when it has 4, in terms of location in the body this is closest to the lungs (where oxygen is needed the least). We don't want the oxygen getting off there so the affinity must be high. As the blood travels through the body to a capillary bed the pH changes and hemoglobins affinity for oxygen weakens letting an oxygen off, causing the affinity to weaken letting an oxygen off, and so on. Therefore we are able to unload our oxygen when and where it is needed the most.
      (175 votes)
  • blobby green style avatar for user Jeff Vedvick
    Sal - what happens to the h+ and CO2 after the hemoglobin has released the oxygen? by what mechanism does the hemoglobin release h+ and CO2 before 'absorbing' more oxygen?
    (14 votes)
    Default Khan Academy avatar avatar for user
    • blobby green style avatar for user carter.m35
      CO2 is converted to carbonic acid by carbonic anhydrase (one of the fastest known proteins) on the cell membrane of the RBC. Conversion of carbonic acid to bicarbonate creates the H+ (Bohr Hydrogen)that decreases hemoglobins affinity for oxygen. The acids and bases are all in equilibrium in the blood. Once it gets to the lungs the CO2 can be released shifting the equilibrium such that bicarb + H+ -> carbonic acid -> enzyme (i forget which one) -> CO2 -> released
      (15 votes)
  • piceratops ultimate style avatar for user Olivia
    Where did they get the name Hemoglobin?
    (9 votes)
    Default Khan Academy avatar avatar for user
  • duskpin ultimate style avatar for user Adhvika
    I don't understand what is porforin, if i'm spelling it right. can someone explain it to me.?
    (6 votes)
    Default Khan Academy avatar avatar for user
  • blobby green style avatar for user Katherine Schwarz
    what does the hemoglobin drop off in the lung and pick up
    (5 votes)
    Default Khan Academy avatar avatar for user
    • leaf green style avatar for user Norlan M
      The simple answer is that hemoglobin drops off CO2 and H+ in the lungs, but this is not exactly what is exhaled. When it unloads CO2 and H+, hemoglobin picks up O2. For a more detailed explanation, read on.

      In the lungs, CO2 and H2O (water vapor) are constantly being exhaled. This constant removal of CO2 and H2O coaxes carbonic acid (H2CO3) to dissociate into H2O and CO2 (catalyzed by carbonic anhydrase) in order to replenish the pool of CO2 and H2O (which are still constantly being eliminated due to exhalation). Reference the video on Le Chatelier's principle for an explanation on why this "equilibrium shift" happens. The dissociation of H2CO3, in turn, reduces the H2CO3 pool and coaxes replenishment of H2CO3 by combining hydrogen ions (H+) with bicarbonate ions (HCO3-). The resultant effect here is the indirect removal of H+ and HCO3- from the blood. Summarizing thus far, exhalation directly removes CO2 and H2O; and this results in the indirect removal of H+ and HCO3-.

      Loss of CO2 through exhalation coaxes any CO2 bound to hemoglobin to release and be exhaled. When CO2 is dumped, O2 can be picked up. Indirect loss of H+ coaxes any H+ bound to hemoglobin to release in order to make H2CO3, which then becomes CO2 and H2O and is also exhaled. When H+ releases, O2 can be picked up by hemoglobin. The indirect loss of HCO3- occurs as previously explained, ultimately also producing H2O and CO2 which are exhaled. This last mechanism is crucial because the greatest proportion of the CO2 made in the tissues is carried to the lungs in the form of HCO3- dissolved in the plasma.
      (13 votes)
  • leaf yellow style avatar for user sabaafzal40
    i don't understand allosteric inhibition.can it be further simply explained?
    (3 votes)
    Default Khan Academy avatar avatar for user
    • aqualine ultimate style avatar for user invictahog
      Enzymes have an active site where they do their job - in this case they bind oxygen so they can carry it around the body. You can imagine something blocking the enzyme from doing its job by binding to the exact place where the oxygen binds and keeping the oxygen from getting to the active site. Another way to change the way the enzyme works is to bind to a second part of the molecule that is not the active site where the oxygen binds. In this case, called allosteric inhibition, binding to this other part of the molecule changes the enzyme in some way that makes it less likely to bind the oxygen. You can imagine that if a big molecule, for instance, were to bind to this "allosteric" site and push on other parts of the enzyme it might change the active site where the oxygen binds and keep it from working as well.
      (6 votes)
  • hopper cool style avatar for user VKD
    how does it know where to go
    (4 votes)
    Default Khan Academy avatar avatar for user
  • hopper cool style avatar for user VKD
    im just wondering how is the heme group formed??
    thanks alot appreciate the help in advance.
    (3 votes)
    Default Khan Academy avatar avatar for user
  • piceratops ultimate style avatar for user Jonah Lee
    whats holding the oxygen to the hemoglobin?

    how do molecules stay together?
    (3 votes)
    Default Khan Academy avatar avatar for user
  • female robot grace style avatar for user Achala
    Sal mentioned about the acidic environment in the muscle cell due to more CO2 ... does this mean CO2 is in the form of lacti acid? if not how is lactic acid involved in this process(bcoz i read about it in books)
    (2 votes)
    Default Khan Academy avatar avatar for user
    • orange juice squid orange style avatar for user CarlBiologist
      The main way blood is buffered from drastic changes in pH is a chemical equilibrium:
      CO2 + 2 H20 <--> H2CO3 + H20 <--> (H30+) + HCO3-
      The presence of larger than normal amounts of C02 drives the equilibrium more to the right, ultimately resulting in more amounts of (H3O+) which means the pH is lowered, generating an acidic environment.

      This is why often before certain athletic events such as a sprinting race you will see athletes rapidly breathing. They are eliminating CO2 from their bodies so much that the equilibrium is driven to the left, which generates a basic environment (basic is the opposite of acidic) that combats and cancels out the acidity due to lactic acid buildup in the muscles.

      This might be a little complex for you at the moment, but it demonstrates the importance of learning about chemistry at the same time you are learning about biology.
      (5 votes)

Video transcript

I've talked a lot about the importance of hemoglobin in our red blood cells so I thought I would dedicate an entire video to hemoglobin. One-- because it's important, but also it explains a lot about how the hemoglobin-- or the red blood cells, depending on what level you want to operate-- know, and I have to use know in quotes. These aren't sentient beings, but how do they know when to pick up the oxygen and when to drop off the oxygen? So this right here, this is actually a picture of a hemoglobin protein. It's made up of four amino acid chains. That's one of them. Those are the other two. We're not going to go into the detail of that, but these look like little curly ribbons. If you imagine them, they're a bunch of molecules and amino acids and then they're curled around like that. So this on some level describes its shape. And in each of those groups or in each of those chains, you have a heme group here in green. That's where you get the hem in hemoglobin from. You have four heme groups and the globins are essentially describing the rest of it-- the protein structures, the four peptide chains Now, this heme group-- this is pretty interesting. It actually is a porphyrin structure. And if you watch the video on chlorophyll, you'd remember a porphyrin structure, but at the very center of it, in chlorophyll, we had a magnesium ion, but at the very center of hemoglobin, we have an iron ion and this is where the oxygen binds. So on this hemoglobin, you have four major binding sites for oxygen. You have right there, maybe right there, a little bit behind, right there, and right there. Now why is hemoglobin-- oxygen will bind very well here, but hemoglobin has a several properties that one, make it really good at binding oxygen and then also really good at dumping oxygen when it needs to dump oxygen. So it exhibits something called cooperative binding. And this is just the principle that once it binds to one oxygen molecule-- let's say one oxygen molecule binds right there-- it changes the shape in such a way that the other sites are more likely to bind oxygen. So it just makes it-- one binding makes the other bindings more likely. Now you say, OK, that's fine. That makes it a very good oxygen acceptor, when it's traveling through the pulmonary capillaries and oxygen is diffusing from the alveoli. That makes it really good at picking up the oxygen, but how does it know when to dump the oxygen? This is an interesting question. It doesn't have eyes or some type of GPS system that says, this guy's running right now and so he's generating a lot of carbon dioxide right now in these capillaries and he needs a lot of oxygen in these capillaries surrounding his quadriceps. I need to deliver oxygen. It doesn't know it's in the quadraceps. How does the hemoglobin know to let go of the oxygen there? And that's a byproduct of what we call allosteric inhibition, which is a very fancy word, but the concept's actually pretty straightforward. When you talk about allosteric anything-- it's often using the context of enzymes-- you're talking about the idea that things bind to other parts. Allo means other. So you're binding to other parts of the protein or the enzyme-- and enzymes are just proteins-- and it affects the ability of the protein or the enzyme to do what it normally does. So hemoglobin is allosterically inhibited by carbon dioxide and by protons. So carbon dioxide can bond to other parts of the hemoglobin-- I don't know the exact spots-- and so can protons. So remember, acidity just means a high concentration of protons. So if you're in an acidic environment, protons can bond. Maybe I'll do the protons in this pink color. Protons-- which are just hydrogen without electrons, right-- protons can bond to certain parts of our protein and it makes it harder for them to hold onto the oxygen. So when you're in the presence of a lot of carbon dioxide or an acidic environment, this thing is going to let go of its oxygen. And it just happens to be that that's a really good time to let go of your oxygen. Let's go back to this guy running. There's a lot of activity in these cells right here in his quadriceps. They're releasing a lot of carbon dioxide into the capillaries. At that point, they're going from arteries into veins and they need a lot of oxygen, which is a great time for the hemoglobin to dump their oxygen. So it's really good that hemoglobin is allosterically inhibited by carbon dioxide. Carbon dioxide joins on certain parts of it. It starts letting go of its oxygen, that's exactly where in the body the oxygen is needed. Now you're saying, wait. What about this acidic environment? How does this come into play? Well, it turns out that most of the carbon dioxide is actually disassociated. It actually disassociates. It does go into the plasma, but it actually gets turned into carbonic acid. So I'll just write a little formula right here. So if you have some CO2 and you mix it with the water-- I mean, most of our blood, the plasma-- it's water. So you take some carbon dioxide, you mix it with water, and you have it in the presence of an enzyme-- and this enzyme exists in red blood cells. It's called carbonic anhydrase. A reaction will occur-- essentially you'll end up with carbonic acid. We have H2CO3. It's all balanced. We have three oxygens, two hydrogens, one carbon. It's called carbonic acid because it gives away hydrogen protons very easily. Acids disassociate into their conjugate base and hydrogen protons very easily. So carbonic acid disassociates very easily. It's an acid, although I'll write in some type of an equilibrium right there. If any of this notation really confuses you or you want more detail on it, watch some of the chemistry videos on acid disassociation and equilibrium reactions and all of that, but it essentially can give away one of these hydrogens, but just the proton and it keeps the electron of that hydrogen so you're left with a hydrogen proton plus-- well, you gave away one of the hydrogens so you just have one hydrogen. This is actually a bicarbonate ion. But it only gave away the proton, kept the electron so you have a minus sign. So all of the charge adds up to neutral and that's neutral over there. So if I'm in a capillary of the leg-- let me see if I can draw this. So let's say I'm in the capillary of my leg. Let me do a neutral color. So this is a capillary of my leg. I've zoomed in just one part of the capillary. It's always branching off. And over here, I have a bunch of muscle cells right here that are generating a lot of carbon dioxide and they need oxygen. Well, what's going to happen? Well, I have my red blood cells flowing along. It's actually interesting-- red blood cells-- their diameter's 25% larger than the smallest capillaries. So essentially they get squeezed as they go through the small capillaries, which a lot of people believe helps them release their contents and maybe some of the oxygen that they have in them. So you have a red blood cell that's coming in here. It's being squeezed through this capillary right here. It has a bunch of hemoglobin-- and when I say a bunch, you might as well know right now, each red blood cell has 270 million hemoglobin proteins. And if you total up the hemoglobin in the entire body, it's huge because we have 20 to 30 trillion red blood cells. And each of those 20 to 30 trillion red blood cells have 270 million hemoglobin proteins in them. So we have a lot of hemoglobin. So anyway, that was a little bit of a-- so actually, red blood cells make up roughly 25% of all of the cells in our body. We have about 100 trillion or a little bit more, give or take. I've never sat down and counted them. But anyway, we have 270 million hemoglobin particles or proteins in each red blood cell-- explains why the red blood cells had to shed their nucleuses to make space for all those hemoglobins. They're carrying oxygen. So right here we're dealing with-- this is an artery, right? It's coming from the heart. The red blood cell is going in that direction and then it's going to shed its oxygen and then it's going to become a vein. Now what's going to happen is you have this carbon dioxide. You have a high concentration of carbon dioxide in the muscle cell. It eventually, just by diffusion gradient, ends up-- let me do that same color-- ends up in the blood plasma just like that and some of it can make its way across the membrane into the actual red blood cell. In the red blood cell, you have this carbonic anhydrase which makes the carbon dioxide disassociate into-- or essentially become carbonic acid, which then can release protons. Well, those protons, we just learned, can allosterically inhibit the uptake of oxygen by hemoglobin. So those protons start bonding to different parts and even the carbon dioxide that hasn't been reacted with-- that can also allosterically inhibit the hemoglobin. So it also bonds to other parts. And that changes the shape of the hemoglobin protein just enough that it can't hold onto its oxygens that well and it starts letting go. And just as we said we had cooperative binding, the more oxygens you have on, the better it is at accepting more-- the opposite happens. When you start letting go of oxygen, it becomes harder to retain the other ones. So then all of the oxygens let go. So this, at least in my mind, it's a brilliant, brilliant mechanism because the oxygen gets let go just where it needs to let go. It doesn't just say, I've left an artery and I'm now in a vein. Maybe I've gone through some capillaries right here and I'm going to go back to a vein. Let me release my oxygen-- because then it would just release the oxygen willy-nilly throughout the body. This system, by being allosterically inhibited by carbon dioxide and an acidic environment, it allows it to release it where it is most needed, where there's the most carbon dioxide, where respiration is occurring most vigorously. So it's a fascinating, fascinating scheme. And just to get a better understanding of it, right here I have this little chart right here that shows the oxygen uptake by hemoglobin or how saturated it can be. And you might see this in maybe your biology class so it's a good thing to understand. So right here, we have on the x-axis or the horizontal axis, we have the partial pressure of oxygen. And if you watched the chemistry lectures on partial pressure, you know that partial pressure just means, how frequently are you being bumped into by oxygen? Pressure is generated by gases or molecules bumping into you. It doesn't have to be gas, but just molecules bumping into you. And then the partial pressure of oxygen is the amount of that that's generated by oxygen molecules bumping into you. So you can imagine as you go to the right, there's just more and more oxygen around so you're going to get more and more bumped into by oxygen. So this is just essentially saying, how much oxygen is around as you go to the right axis? And then the vertical axis tells you, how saturated are your hemoglobin molecules? This 100% would mean all of the heme groups on all of the hemoglobin molecules or proteins have bound to oxygen. Zero means that none have. So when you have an environment with very little oxygen-- and this actually shows the cooperative binding-- so let's say we're just dealing with an environment with very little oxygen. So once a little bit of oxygen binds, then it makes it even more likely that more and more oxygen will bind. As soon as a little-- that's why the slope is increasing. I don't want to go into algebra and calculus here, but as you see, we're kind of flattish, and then the slope increases. So as we bind to some oxygen, it makes it more likely that we'll bind to more. And at some point, it's hard for oxygens to bump just right into the right hemoglobin molecules, but you can see that it kind of accelerates right around here. Now, if we have an acidic environment that has a lot of carbon dioxide so that the hemoglobin is allosterically inhibited, it's not going to be as good at this. So in an acidic environment, this curve for any level of oxygen partial pressure or any amount of oxygen, we're going to have less bound hemoglobin. Let me do that in a different color. So then the curve would look like this. The saturation curve will look like this. So this is an acidic environment. Maybe there's some carbon dioxide right here. So the hemoglobin is being allosterically inhibited so it's more likely to dump the oxygen at this point. So I don't know. I don't know how exciting you found that, but I find it brilliant because it really is the simplest way for these things to dump their oxygen where needed. No GPS needed, no robots needed to say, I'm now in the quadriceps and the guy is running. Let me dump my oxygen. It just does it naturally because it's a more acidic environment with more carbon dioxide. It gets inhibited and then the oxygen gets dumped and ready to use for respiration.