Main content
Biology library
Course: Biology library > Unit 13
Lesson 4: Photorespiration: C3, C4, and CAM plantsPhotorespiration
The Calvin cycle and a competing pathway called photorespiration (also initiated by Rubisco). Created by Sal Khan.
Want to join the conversation?
- What does Pi mean?? I am not referring to 22/7 or 3.14(Pi ) when phosphoglycolic acid is dephosphrylated ,it also gives Pi(3 votes)
- Pi is often used as shorthand for inorganic phosphate(9 votes)
- is photorespiration an alternative to C3 cycle? or are they different depending on what reacts with RuBisCO? What descides whether O2 or CO2 reacts with RuBisCO?(5 votes)
- Sal says the the 5 phosphoglycolates are waste . My bio book says that they go to the peroxisomes and mitochondria to get broken down but it also says that they get broken down into CO2. With CO2 you can get the Calvin cycle to work again.
So why is Photorespiration useless? Is it because not enough CO2 is produced during photorespiration vs. the regular Calvin Cycle? Or is it more beneficial for the plant to do nothing and save whatever CO2 it has for when its ready?(3 votes)- It is not useless in that way that it isn't used for anything, it is just useless because you need more ATPs to get the same, especially by breaking it down to CO2 in peroxisomes! Without photorespiration plants would produce just Carbs which are pure food and a lot of crops.(5 votes)
- What is the difference between oxidizing(??) and hydrolizing?(2 votes)
- When an atom is oxidized it loses an electron, loses hydrogen or gains oxygen. When an atom is hydrolised it gains water.(6 votes)
- I don't get how the number of phosphates work out when 5 G3Ps are used to reproduce 3 RuBP. 5 phosphates come from the 5 G3Ps, and 3 more come from the 3 ATP used. So.. there's a total of 8 phosphates, yet only 6 phosphates are needed to create 3 RuBP, right? Can anyone please explain? Thank you!:)(3 votes)
- When you start out with 3 RuBP there are 6 phosphates, and after you add 3 CO2 you get 6 phosphoglycerate with 6 phosphates total. You then add 6 ATP to get 12 phosphates total, 6 of which are removed to get 6 G3P's with 6 phosphates. 1 G3P leaves the cycle, losing its phosphate, while the other 5 are rearranged using 3 more ATP into 3 RuBPs. So already you lost 6 phosphates, and 1 from the used G3P, but you used 9 ATP overall, so the last two phosphates needed to regenerate the ATP's in the light reactions are removed during the regeneration of RuBP. Some flowcharts actually show the removal of 2 phosphates as the last part of the calvin cycle. You are right, only 6 phosphates are needed for 3 RuBP, so the 2 "missing" phosphates that were removed from ATP simply float around until they are needed later to regenerate the ATP via chemiosmosis. I hope that explains it well enough.(3 votes)
- I know that 6RuBP and 6CO2 will create 12 3-pga molcules, but what is happening to the O2 in CO2?(3 votes)
- photorespiration occurs in C3 plants under high light intensities, due to the accumulation of oxygen in the mesphyll cells...why?
...is CO2 converted to malic acid at night?(3 votes)- Sal explained that due to high light intensities, Rubisco's affinity for oxygen increases, but since of high light intensities stomata are closed as well. Those both factors contribute to oxygen accumulation in mesophyll cells.
Also, since stomata are closed, C02 cannot diffuse in cells.
Conversion od C02 into malic acid undergoes in CAM plants - Crassulacean acid metabolism .(1 vote)
- I don't mean to be splitting hairs here, but you pronounce RuBP "ribulose bi-phosphate", isn't it called "bis-phosphate"? I think it's important to emphasize the difference from di-phosphate, being that the phosphate groups are not adjacent. At least it helped me understand and remember it.(2 votes)
- The chemical's full name is ribulose-1,5-bisphosphate.
So, the correct pronunciation is with the s, "bis-phosphate".(3 votes)
- Why don't the PGA in photorespiration just make glucose? Because they have the carbons in order to do so, so I don't see why it wouldn't. I am eager to know the answer to this question:)(2 votes)
- Let's think of this as a drama......
Characters: Leaf, O2
[Curtain raises]
Scene: [Leaf is attached to a plant and O2 molecule is beside it, waiting to meet]
Leaf: What do you want?
O2: RuBP from you.
Leaf: Why?
O2: Because I want to make glucose by binding with it.
Leaf: How?
O2: First, with RuBP, I will form 6 molecules of PGA and 6 molecules of phosphoglycolate. Then the latter will be converted to 3 molecules of the former, resulting in 9 molecules of PGA. From there 2 molecules will form glucose and rest 7 will return back to you.
Leaf: What about the RuBP that I will lend you? You need to return it.
O2: Yes, you can convert.
Leaf: How? I need 10 PGA to re-synthesize RuBP, and you are returning me 7! First you have to form 12PGA and promise me to return 10, otherwise I won't lend.
O2: But I can't do that.
Leaf: You need to deal with your problem, nothing can be done.
O2: [sobs] Please!
Leaf: No. Never.
[Curtain falls](3 votes)
- Are the phosphates on the RuBP and other molecules the same as the phosphates on the ATP?(2 votes)
- Yes, it is always a phosphate group (PO4-).(2 votes)
Video transcript
- [Voiceover] We have other videos that go into some depth on the Calvin cycle, and we'll refer to that in this video as the normal Calvin cycle, and the focus of this
video is really a quirk that diverts us from
the normal Calvin cycle, and it's a quirk due to
this enzyme right here whose shorthand name is rubisco. So to get an appreciation for that quirk, let's first do a very quick overview of a normal Calvin cycle. So we can start at any point, but I'll start at the
point that is typically started at, and we can start with
this five carbon molecule. And we're visualizing just the
carbons here for simplicity. So each of these grey
circles represent a carbon. There's other atoms a
part of this molecule, but we're not drawing them, and that's because the
carbon accounting is what is interesting in-- Well, not only the Calvin cycle, but also this variation, this diversion that we're going to see, that we're gonna call photo-respiration. So, right over here, I've set it up so that I have six molecules of this. We call this ribulose
one, five, bisphosphate, but because it's a mouthful, the shorthand notation is R-U-B-P. Sometimes people might say Roo-B-P, or I guess you could
even say Rube-P somehow, but each of these six Rube-P, or RuBPs, can then react with a carbon dioxide. So if I have six RuBPs, well, they're gonna react
with six carbon dioxides, and so one way to think about it is, it's fixing the carbon
in that carbon dioxide. It's taking this carbon that's part of this gaseous carbon dioxide, and fixing it as part
of an organic molecule. Now, you might be tempted to say, well, it's gonna create
six carbon molecules, but then those will immediately become 12 three carbon molecules. And notice, and it's
important to keep doing this. Pause the video if you need to. You can make sure that the
carbons are all accounted for. Right over here, how
many carbons do we have? Well, we have six times five, so that's 30 carbons right over here, and here we have six times one carbon, so that's six carbons right over here. So if we wanna account
for all of our carbons, we should have 36 carbons right over here, and we do. We have 12 three carbon molecules. This three carbon molecules, when we go into some detail here in the video on the Calvin cycle, it's called three phosphoglycerate, but that's not what the
focus is on this video. The focus of this video is the enzyme that actually does the fixing of the carbon along with the RuBP. And that enzyme, that character, the character with the
quirks that we're going to talk about, the shorthand, its name, you could call it ribulose
one, five, bisphosphate oxygenase-carboxylase, but that's even more of
a mouthful than RuBP, so people call it the nice
friendly name rubisco, rubisco for short. But you can learn a lot
about what rubisco does from its name right over here, and you can even learn a
little bit about its quirk that we're about to talk about. So it obviously involves
ribulose one, five bisphosphate, and it does indeed involve that, and then you see oxygenase,
dash, carboxylase. Well, the carboxylase is what tells us that it can deal with the
carbon dioxide right over here. The carbon dioxide can
be one of the substrates in a reaction with the ribulose
one, five, bisphosphate. And so that's exactly what
it's doing in this reaction. In a normal Calvin cycle, it's acting as a carboxylase. It is fixing that carbon. It's making it part of, if you view, you know,
if you view that carbon-- Actually, I won't do it that way because here we have 12 as many. But it's taking these carbon molecules, and it's fixing them
into organic molecules, some of which can eventually be used to create glucose. And that's what happens
in a typical Calvin cycle. We use up some NadPhs. We use up some ATPs, and we go down. Through this cycle, eventually, we create some G3Ps, which are also three carbon molecules. G3P is short for
glyceraldehyde three phosphate, for those of you who are interested, and then, if we use this
accounting of those 12, 10 go back through the Calvin cycle to regenerate our ribulose
one, five, bisphosphate, and two of them exit the Calvin cycle, and then can be used to produce one six carbon glucose. And so that's what happens when everything is fine and dandy. That's what the Calvin cycle's purpose is, is to be able to have a store of energy in the form of a glucose. Now, you might have
already gotten a little bit of the foreshadowing from rubisco's name. Well, maybe it sometimes
acts as an oxygenase. So instead of fixing carbon, maybe sometimes it fixes oxygen, and that is indeed the
quirk that I'm talking about of rubisco. So in photo-respiration, instead of fixing carbon, it fixes oxygen along with the ribulose one, five, bisphosphate. And you might say, "Why does it do that?" And the answer is, well,
that's a really good question. Some folks think, well,
that's just one of these inefficiencies of a biological process. It really shouldn't do it. It's in some ways
detrimental to the plant. It could be a side
effect, a legacy feature, or side effect from ancient evolution when there was very little
oxygen in the atmosphere, and so this didn't seem like that bad of an inefficiency. But it does happen, and in particular, the times where photo-respiration
is more likely to happen with typical plants, often
referred to as C three plants, and C three is referred to
because the first product when you fix the carbon is
a three carbon molecule. But this typically
happens, or this happens with typical plants in
hotter than normal weather. So let me write this down, and I'll write it in a hot color. Hot, hot conditions. That's where it typically happens with typical plants, and why hot conditions? Well, in hot conditions, first of all, rubiso has more affinity. Rubisco's affinity, affinity to O2 increases. So under normal conditions, it tends to have more
affinity for carbon dioxide, but under hot conditions, these proteins are-- No protein is perfect. It can morph a little bit, so it has more affinity
to molecular oxygen, and also, under hot conditions, plants are worried about conserving water, and so they will close their stomata, stomata, stomata closed, to preserve water, but when
the stomata are closed, you have CO2 can't diffuse in, can't diffuse in, and O2 can't diffuse out, can't diffuse out. So your ratio of O2 to CO2 increases. So O2 to CO2 ratio, ratio increases. So under hot weather, the rubisco just wants to
work with the oxygen more. It typically wants to work
with the carbon dioxide, and also, because the stomata's closed, and you don't have as easy diffusion, well, this ratio is going to increase. And so, things are just
more likely to react with the oxygen, especially the rubisco's
more likely to bump into it in the right way than it is with the carbon dioxide. But let's think a little bit about why this is inefficient. Well, in this case,
it's fixing the oxygen, and so it's not gaining those carbons like we just saw in the typical
or the normal Calvin cycle, and so here, and you can account-- I encourage you to keep pausing the video and account for the carbons, but here, you can no longer produce your 12 three carbon molecules, 'cause you're not getting
these six carbons over here, so instead, you can only produce six of those three carbon molecules, and then another six of
a two carbon molecule called phosphoglycolate, and once again, I'm not
showing all of the oxygens and I'm not showing all the phosphates. I'm just accounting for the carbons. And so, this seems like a pretty bad loss. You're not able to use those
carbons right over there. Well, evolution has given us pathways to at least start to salvage some of it. But it's a pretty intense pathway to get back some of those carbons, and the reason why it wants to get back some of those carbons is because, remember, at the end of the day, you want to attempt to
produce some glucose, and you wanna have the
typical or the normal Calvin cycle continue to happen, but just so you get a sense
of what the salvage pathway looks like, this two carbon molecule right over here, it has to be converted to glycolate, then that has to go to the peroxisomes where it becomes glycine to the mitochondrion, and you see this whole process here just to be able to salvage it into a few more of the
three carbon molecules, and that's essentially what
happens right over here. We get three more of the
three carbon molecules, but we do lose, for the
way I've accounted of it, three molecules of carbon dioxide, and this one way that why it's called, or one reasoning for why it's called photo-respiration. Respiration, we use oxygen, and we produce carbon dioxide, and that's exactly what's happening. We're using oxygen, and we're
producing carbon dioxide. And so, as you see, the mechanism, it kind of makes the Calvin cycle-- It disrupts it, or
makes it less efficient. And so, once again, why does this happen? Well, it could just be a biological quirk that has not been selected
strongly enough against, or some people believe
it actually has some not so well understood mechanism, and it somehow helps
the plant in some way, but it's a really interesting
thing that goes on, and, you know, rubisco is not just some very fringe molecule. As you see, it's central
to the Calvin cycle, and if you look at plant matter, in particular plant leaves, it'll represent roughly 20% of the protein mass in those plant leaves. So it's a very common
protein slash enzyme, but it's got this quirk, this quirk that takes
the plant down the path of photo-respiration.