Main content
Biology library
Course: Biology library > Unit 13
Lesson 2: The light-dependent reactionsLight dependent reactions actors
More detailed description of the various molecular actors in the light dependent reactions.
Want to join the conversation?
- Is the h+ pump passive or active transport?(8 votes)
- Active. Only when there is no energy being used will transport ever be passive (i.e. diffusion and attraction of charges).(15 votes)
- What is a reducing agent?(6 votes)
- A reducing agent is a substance that reduces another substance and undergoes oxidation during the process.
It can reduce another substance by: Removing Oxygen from it (and taking it up), donating Hydrogen to it (from itself) or donating electrons to it (from itself).(15 votes)
- what is the chlorophyll pair? 'A' pair to be exact? what is the little blue structure between the two green wings?(6 votes)
- the chlorophyll pair of photosystem 2 are a part of 6 chlorophyll a molecules.They are known as the special pair.The electrons leave this special pair.(3 votes)
- At, Sal mentions NADP+ being REDUCED to NADPH. How exactly is that reducing if your adding an H atom onto that equation? 1:00(3 votes)
- Reduction in this case refers to charge, not the size of the molecule. Electrons are negative. Reduction means gaining electrons. The positive charge of NADP+ is what is being reduced. Here's an explanation of oxidation and reduction:
https://www.khanacademy.org/science/chemistry/oxidation-reduction/redox-oxidation-reduction/v/introduction-to-oxidation-and-reduction(7 votes)
- How is NADP+ becoming NADPH when H+ is a kation and so is NADP+ ?(2 votes)
- NADP+ takes up 2 electrons along with H+(9 votes)
- At, if NADP+ does practically the same thing as NAD+, why doesn't the plant just use NAD+? 2:10(5 votes)
- what is the first product of light dependent reactions and where does it occur(3 votes)
- the light dependent reaction has 2 products: NADPH and ATP.
the NADPH is produced from NADP+ by the NADP+ reductase (an enzyme that promotes chemical reduction).
the ATP is produced by ATP synthase (enzyme that catalyses a synthesis process = combining ADP with a phosphate)
it occurs in the thylakoid
it is not that one happens "first", though according to the diagram the NADPH is produced first, because this is a continuous cycle(2 votes)
- Why is used 2e- instead of 1e- in order to reduce NADP+ to NADPH?(2 votes)
- 1 electron is used per 1 NADP+ that is reduced to NADPH. Because 2 NADPH is used in the Calvin Cycle per 1 turn, so 2 electrons should be used(4 votes)
- what is plastoquinone and plastocyanin??(2 votes)
- They are both molecules that can diffuse around in the membrane and carry electrons from one complex to another. Plastoquinone is a small organic molecule that can gain/lose electrons, and plastocyanin is a small protein that has a bound copper ion that can gain/lose an electron.(3 votes)
- what does the P680 and P700 do??(2 votes)
- They are special pairs of chlorophyll molecules which have electrons that can be excited by light, and actually be donated to another molecule. This is mentioned for example at. 0:15
The electrons being excited by light is so important because this the energy that the plant can capture as the as the electron 'falls' back down (in a round about way), and that energy is needed for example to drive chemical reactions and make the building blocks of the cell.
What allows the P680 and P700 to provide these electrons that can be excited and passed to another molecule? It is a result of their chemical structures and environment that means that light with the wavelengths found in sunlight can excite these electrons. Also important is that there is a molecule positioned nearby which can accept the electron that has been excited.(3 votes)
Video transcript
- [Voiceover] In a previous video, we gave an overview of the
light dependent reactions which are essentially occurring
across the thyla or within or across the thylakoid membranes, right that we zoomed in on one and we saw okay we have
some energy from light exciting the electrons
within that chlorophyll pair, that P680 chlorophylled A pair. That electron, that energized electron will then be transferred
from one molecule to another and as it does so it will go to lower and lower energy states. And that released energy,
some of it will be used to transfer hydrogen
protons across the membrane. And then eventually that
electron will make it's way to Photo System I where it
can get excited again. If we think of it as the same electron. It doesn't necessarily have
to be the exact same electron. But we can think of that same electron as being excited again by light energy and then it can once again go to lower and lower energy states and this time it's going to be used to reduce NADP+ to NADPH. Now NADPH itself is an
input into the Calvin Cycle. But ATP is another input we
need for the Calvin Cycle and the way that we produce ATP is that hydrogen ion concentration that increases on the inside due to it being essentially pumped
across the membrane, as well as the leftover hydrogen ions from the water after it's
stripped of electrons, to replace that originally
excited electron in that P680 chlorophyll pair. Well that increased
hydrogen ion concentration can be used to drive ATP synthase which creates ATP from phosphate and ADP. And we saw it, we saw that over here, without seeing the different components. You get light, excite the electron. The electron goes to lower
and lower energy states. As it does so it's going from Photo System II to Photo System I. Some of that energy is being used to pump hydrogen ions into
the thylakoid lumen. Then that electron can get excited again and then as it gets transferred and goes to lower and lower energy states, it can be used to produce NADPH where once again it's electrons are still at a fairly high energy state so it's a strong reducing agent. And so that's why it's
valuable in the Calvin Cycle. That energy from acting
as a strong reducing agent can be used to, or help in the creation or the eventual creation of the sugar. And once again where as an electron, once it gives it away,
how does it get replaced? Well it snags it from the water. What I have here is a
more detailed diagram that labels some of the actors and the important thing is
really what we just covered and what we covered in more
detail in the previous video. The conceptual idea of what's happening in the light dependent reactions. But a lot of times in your biology class or in your biology book, you'll see talk of things
like a cytochrome complex and plastoquinone and things like that and I want you to look at that right now so you're not intimidated when you see it and that you see that these are just the actors that we talked about. So right over here,
this is Photo System II, and what you have, and I give credit for where
this image comes from. It's modified from The
Light Dependent Reactions of Photosynthesis Figure
8 by OpenStax College. But this right over here,
we see the light is, the light is interacting
the way it's depicted here, not directly with the chlorophyll pair within Photo System II that,
that P680 chlorophyll A pair. We see it acting on some of
these neighboring molecules as their electrons get excited and then go to lower energy levels, that energy can be used to
excite neighboring electrons. This kind of keeps happening. That energy gets transferred eventually to excite the electron in that P680 pair and then that electron, the
first electron acceptor, you'll see this sometimes spoken of in your biology textbooks, is pheophytin. And that can then transfer
the electron to plastoquinone, and that plastoquinone is interacting in this cytochrome complex which transfers the
electron from plastoquinone to plastocyanin and as it's doing it you see the hydrogen
ions being transferred from the outside of the thylakoid to the inside of the thylakoid, which is exactly what
we've been talking about. And then as we go to Photo System I. Well that electron can
be transferred from the plastocyanin to the chlorophyll
pair, the P700 chlorophyll. That can get excited again. Once again, it doesn't have to be the light directly exciting it. It can be exciting other molecules within the Photo System I, but that energy eventually
gets transferred to that chlorophyll,
excites it's electrons and then it goes from
one molecule to another. Eventually goes to ferredoxin which is being used in conjunction. It's one of the actors that the enzyme NADP+ reductase
needs along with NADP+. So it's essentially just reducing NADP+ along with this electron that's on the ferrodoxin to produce NADPH. And once again what's going on here? Well this is the ATP synthase that is using all this increased
hydrogen ion concentration on the inside of the thylakoid to pump or to power the motor, or the ATP synthase is
the motor that is powered as these hydrogen ions go down
their concentration gradient. And that energy is used
to jam the phosphate on to the ADP to produce ATP. So I've said essentially the same thing two or three times already in
the last two or three videos but I was doing it because
when you first see this it seems very very intimidating
and very very complex, and it is complex, and
frankly it's amazing that things like this are happening on the plant that I'm looking at outside my window right now. It boggles my mind that this kind of thing is happening in nature. And there are bits and pieces of it that aren't fully understood yet and still need to be discovered. But at the same time the general idea is not as intimidating
as these diagrams appear. So hopefully you find this
awe inspiring, like I do. And not as intimidating as what some of these words might
make you feel initially.