Main content
Biology library
Course: Biology library > Unit 21
Lesson 1: More about DNA and RNA- DNA and RNA structure
- Introduction to nucleic acids and nucleotides
- Molecular structure of RNA
- Antiparallel structure of DNA strands
- Semi conservative replication
- DNA structure and replication review
- Replication
- The genetic code
- DNA and chromatin regulation
- Intro to gene expression (central dogma)
- Cellular specialization (differentiation)
- Eukaryotic gene transcription: Going from DNA to mRNA
- Regulation of transcription
- Transcription and RNA processing
- Non-coding RNA (ncRNA)
- Regulation of gene expression and cell specialization
- Post-transcriptional regulation
- Translation
- Differences in translation between prokaryotes and eukaryotes
- Prokaryote structure
- Retroviruses
© 2023 Khan AcademyTerms of usePrivacy PolicyCookie Notice
Differences in translation between prokaryotes and eukaryotes
The process of mRNA translation differs between prokaryotes and eukaryotes. Prokaryotic mRNA has a Shine-Dalgarno sequence for ribosome binding, while eukaryotic mRNA has a 5' cap and poly-A tail for protection and ribosome binding. The first amino acid also differs: formylmethionine in prokaryotes and methionine in eukaryotes. Created by Efrat Bruck.
Want to join the conversation?
- What is the function of the shine-delgarno region and why is it only in prokaryotic cells?(14 votes)
- The Shine-Dalgarno sequence helps recruit the ribosome to the mRNA to initiate protein synthesis by aligning the ribosome with the start codon.
It's not used in eukaryotes because the initiation of translation is far more complicated in eukaryotes than prokaryotes.(36 votes)
- Can translation also occur in the rough endoplasmic reticulum because doesn't it also contain ribosomes?(4 votes)
- Yes, translation can occur anywhere ribosomes are located. There are free ribosomes that are present in the cytoplasm and ribosomes that are in the rough endoplasmic reticulum.(14 votes)
- but what if friendly bacteria that produce vitamins are lysed by some bacteriophage? This would produce an unneeded immune response since:
1) The bacteria that was killed was beneficial and the fission rate is faster
and
2) Bacteriophages do not infect eukaryotic cells so they are to us eukaryotes a harmless virus.(5 votes)- Even if the lysed bacteria were beneficial to us, the resulting debris needs to be cleaned up. This might be assisted by the immune response so generated.(6 votes)
- What about splicing? Does it happen before all of this??(3 votes)
- Splicing of introns from eukaryotic mRNA is initiated only after the process of capping has been completed. Splicing might get completed before or after tailing occurs.(7 votes)
- When she says the ribosome binds to the 5'-cap, does that really mean the small subunit binds? I thought that the large subunit doesn't bind until the small subunit + tRNA with methionine have found the start codon. Please clarify! Thanks! :)(6 votes)
- I learned that replication or transcription only occur 3' to 5', that means ribosomes can only add new nitrogenous bases on the 3' end. But then how come ribosome attach to 5' end and continue towards 3' end? If it is anti-shia parallel than doesn't it mean that it is adding on the 5' side of the new mRna??(2 votes)
- You're mixing up a few things here. First off, mRNA is transcribed in the 5' to 3' direction. This means that RNA polymerase reads the template DNA strand in the 3' to 5' direction in order to build the mRNA strand in the 5' to 3' direction.
Nitrogenous bases are one of the three groups that make up a nucleotide (along with a pentose sugar and a phosphate group) and do not need to be added on during transcription (nucleotides do). Ribosomes do not add nucleotides to the growing mRNA molecule, RNA polymerase does. Ribosomes are involved in translation, converting the mRNA into a polypeptide chain.(6 votes)
- If your gut bacteria are prokaryotic, does your body attack those cells when they release Fmet?(3 votes)
- So if the prokaryotes have the Shine-Dalgarno sequence on their mRNA, where would the Kozak sequence be on the eukaryote's mRNA?(3 votes)
- Why is formylmethionine used in prokaryotes instead of just methionine?(3 votes)
- Since chloroplasts and mitochondria evolved from prokaryotes, do they translate/transcribe without the 5' cap and poly-a tail and use Fmet instead of met?(2 votes)
Video transcript
- [Voiceover] Let's talk
about some of the differences between how translation
happens in prokaryotic cells and how it happens in eukaryotic cells. And I want to focus mainly on the mRNA just before
it's ready to be translated. So let's start with our prokaryotic mRNA and let's look at our
five prime side first. So we have this yellow part right here, and that's the noncoding region. And it's called the noncoding region because the ribosome is not actually going to read that part. So that particular sequence of amino acid is not that important. And then after the noncoding region we have the Shine-Dalgarno sequence. And the Shine-Delgarno sequence is the site that the ribosome's going to recognize and bind to. So let's just throw a
ribosome right over here. This is where the prokaryotic
ribosome is going to bind. And then after the
Shine-Delgarno sequence, we have another noncoding region. Just gonna abbreviate it NCR. And then we have our start codon, which is typically AUG, so that tells us to start. And so the ribosome's
going to start translating, it's going to read this entire section, put together the corresponding
polypeptide chain, until it hits the stop codon, which tells it to stop translating. And then we have another noncoding region. Let's look at our eukaryotic mRNA. And so it's pretty similar, but you can see there
are some differences. So we'll start with our
five prime side first. So you see this red
nucleotide right over here. That's the five prime cap. And the five prime cap is
simply a guanine nucleotide. So I'm gonna draw a G inside, Guanine, and it's going to have a methyl group somewhere on the molecule. So I'm gonna draw a methyl group. And the bond between this guanine and the nucleotide right near it is a bond that's different than the bond that you'd typically find
between two nucleotides. And so that's really all
the five prime cap is. And the five prime cap is actually the ribosomal binding site in eukaryotes. So that means that in eukaryotes, the ribosome's going to recognize this particular part and bind to it. So after the five prime cap, we have this other noncoding region which the ribosome's
not going to translate. And then the ribosome is going
to hit the start codon again. AUG tells it to start, and
it's gonna start translating, so it's going to translate
this entire section until it hits the stop codon. And then we have another noncoding region. And then we hit something
that looks different than what we've seen in
the prokaryotic mRNA, so this section with blue nucleotides, and that's called the poly-A tail. And the poly-A tail is
a bunch of nucleotides that are all A's, or adenines, so I'm gonna draw A's inside
all of these nucleotides. And the poly-A tail is
actually pretty long, so it's typically anywhere between 100 and 250 nucleotides long. So that's pretty long. So I didn't exactly draw it to scale. And the purpose of both
the five prime cap, and the poly-A tail is to prevent this mRNA from being degraded by enzymes. So it acts as kind of a signal that does not allow enzymes to
break it down or degrade it. And so you might be wondering, well, what about prokaryotic mRNA? How come they don't have anything similar to prevent them from being degraded. And the brief answer to that question is that in prokaryotic cells, transcription, that's an R, and translation, both happen in the same place. So prokaryotic cells don't
exactly have a nucleus. They have this cytosol and transcription and translation are happening in the same place. And not only are they
happening in the same place, but they can actually be happening at the same time. So you can have a piece of mRNA that's being formed, and while it's being formed, a ribosome will attach to it
and being to translate it. But, in eukaryotic cells, things
are a little bit different. So transcription... happens in the nucleus, and translation happens in the cytoplasm where there are ribosomes. And so the mRNA, after it's made, has to travel, from the
nucleus to the cytoplasm to where the ribosomes are. And so because it's traveling this relatively large distance, it's going to encounter a
lot of different things, including enzymes that
might break it down. And so it needs this extra protection to prevent it from being
damaged in any way. There's one more difference
I want to talk about in how translation happens
in prokaryotes and eukaryotes and that is what the first amino acid in the polypeptide chain will be. So in prokaryotic cells,
the first amino acid in the chain is always formylmethionine. And formylmethionine is simply the amino acid methionine, but with a formyl group attached. And in case you don't remember what a formyl group looks like, it looks like that. In eukaryotic cells, the first amino acid in all the polypeptide
chains is simply methionine. And it's interesting to note that formylmethionine actually
acts as an alarm system in the human body. So if you had some
bacterial cells in your body that were damaged in any way, there would be these
formylmethionines floating around, and that tells your body that
there are bacteria around, and it's going to trigger
an immune response.