If you're seeing this message, it means we're having trouble loading external resources on our website.

If you're behind a web filter, please make sure that the domains *.kastatic.org and *.kasandbox.org are unblocked.

Main content

Introduction to reaction quotient Qc

Introduction to the reaction quotient Qc, and comparing the reaction quotient with the equilibrium constant to predict how concentrations will change. 

Want to join the conversation?

  • piceratops ultimate style avatar for user Darmon
    At around , the speaker states that having no reactants gives us a value of zero in the denominator, which makes the reaction quotient equal to infinity. Does that not violate a principle of mathematics: division by zero is undefined? Is this also how it is defined in chemistry, or was the infinity definition invented to make such a calculation possible in a chemistry context ?
    (11 votes)
    Default Khan Academy avatar avatar for user
    • blobby green style avatar for user yuki
      From the author:Great point, I think I misspoke in the video. We generally assume there is always at least some tiny bit (a molecule or two, perhaps) of the reactants left. That means the denominator is never equal to zero, it just gets very very very tiny so that the quotient approaches infinity but isn't undefined. I hope that helps!
      (29 votes)
  • marcimus red style avatar for user Jullienne Laurent
    were did you get the concentrations from to get 4.3
    (15 votes)
    Default Khan Academy avatar avatar for user
  • marcimus purple style avatar for user Lucy Cat
    How did you get 4.3 for the first reaction?
    (7 votes)
    Default Khan Academy avatar avatar for user
  • aqualine ultimate style avatar for user Sarthak
    Apart from acidic or basic medium, can we balance a redox reaction in a neutral medium?
    (4 votes)
    Default Khan Academy avatar avatar for user
  • aqualine seed style avatar for user shivammishraanil
    I really didn't get the difference between the formula for Kc and Qc
    And how did you get Kc = 4.3?
    (3 votes)
    Default Khan Academy avatar avatar for user
    • piceratops seed style avatar for user RogerP
      Consider the reaction: A + B <--> C.

      Kc is the equilibrium constant and it equals [C]/[A][B] at equilibrium. But when you first mix A with B, the reaction won't be at equilibrium because there will be a lot of A and B, but very little C. If at this time you measure the concentrations of A, B and C and work out the value of [C]/[A][B] it won't equal Kc because the reaction is not at equilibrium - if fact, it will be smaller than Kc because the numerator will be small and the denominator will be big. We call the result of this calculation Qc.

      As the reaction progresses towards equilibrium, the concentrations of A and B will decrease as more C is formed. If we keep measuring the concentrations of A, B and C, and calculating [C]/[A][B] (which we are calling Qc) then we will find that Qc gets closer and closer to Kc until, at equilibrium, Qc equals Kc.
      (3 votes)
  • blobby green style avatar for user ritniltap
    What will happen if inert gas is added at constant pressure, but increasing volume?
    (2 votes)
    Default Khan Academy avatar avatar for user
  • blobby blue style avatar for user Ananya A
    Just to clarify, what if only one of the reactants gets completely used up?
    Would the Keq be infinity? Or would we calculate it without taking the used up reactant into consideration?
    (1 vote)
    Default Khan Academy avatar avatar for user
    • female robot grace style avatar for user tyersome
      If a reactant gets completely used up, then you don't have an equilibrium reaction!

      This section is only relevant to reactions that don't go to "completion" — i.e. they reach a balance point where reactants and products both exist.

      Does that help?
      (3 votes)
  • winston default style avatar for user Gray
    At , why did Kc and Qc get different outcomes? What was the difference between the two?
    (1 vote)
    Default Khan Academy avatar avatar for user
  • blobby green style avatar for user Noah Timmer
    Is water included in reaction quotient expressions?
    (1 vote)
    Default Khan Academy avatar avatar for user
  • blobby green style avatar for user 2868380966yang
    how do you know the concentration of gases? they are mixed up
    (1 vote)
    Default Khan Academy avatar avatar for user

Video transcript

- [Voiceover] Today we are going to be talking about the Reaction Quotient, Q. In this video, I'm going to go over, how you calculate Q and how you use it. We're gonna start with and example reaction between sulfur dioxide, S02 gas, which will react with oxygen gas, and this is a reversible reaction that makes sulfur trioxide or SO3. We should make sure this is a balanced reaction. We have two sulfur dioxdes reacting with one O2 to give 2S03. At equilibrium we can calculate the equilibrium constant, Kc. So, at equilibrium we know the concentrations should be constant because the rate of the forward and backward reactions are the same. And if we plug those concentrations in to this expression, we will get Kc. So, Kc is the product concentration raised to the second power so that's from this stoichiometric coefficient. And then our reactant concentrations, so S02 squared and the concentration of O2. So we know at some temperature, if you plug in the equilibrium concentrations, Kc is equal to 4.3. But what if we're interested in looking at the reaction and it's not at equilibrium yet or maybe we just don't know if it's at equilibrium. In that case, when you're not sure it's at equilibrium or really at any point in your reaction or any time, we can calculate the Reaction Quotient, Q. So Qc is equal to the concentration of our product squared, so the concentration of the product raised to the stoichiometric coefficient times the reactant concentrations, also raised to their stoichiometric coefficients. So S02 squared and O2. So you may be wondering at this point, what's the difference? The equation for Qc and Kc will always look exactly the same and the main difference is when you use them. The equilibrium constant K you calculate only with the equilibrium concentrations. So the c means everything is in terms of the molar concentration. And for the reaction quotient, Q, again everything is in terms of molar concentration but we can calculate it with any concentrations and we don't have to be at equilibrium. Molar concentration... So let's calculate this for a set of example concentrations. At some point in our reaction we have the following concentrations. We have 0.10 molar S02, 0.30 molar O2, and 3.5 molar of our product. So if we plug these numbers into our expression for Qc, we get 3.5 molar squared in the numerator and 0.10 squared times 0.3 in the denominator. So if I plug this into my calculator, I get that Qc with this set of concentrations is 4,083. So now we know how to calculate Qc. So next we're going to talk about what it tells you. So there are three possible scenarios. So when Q is equal to K, that tells us we're at equilibrium. So, if at any point you're not sure if your concentrations are the equilibrium concentrations, you can calculate Q and check if it's equal to K. And in this case, it's not. So the other two possibilities are that Q is greater than K, which is the case here. Or Q can be less than K. So let's go through both of those possibilities. We can draw all of the possible values of Q on a number line or a Q line. So Q can have values anywhere from zero to infinity. When you have no product your numerator is zero and Q is equal to zero. So that tells us Q equals zero when you have all reactants and no products. And then if you have no reactants left and all products, we have zero in the denominator and that gives us a Q value of infinity. So that means at Q equals infinity, we have all products. Then we have a bunch of values in between. And I'm gonna just write some intermediate values in here but the actual intermediate values here aren't super important. We're mostly gonna wanna compare the relative values of our Q and K. So Q here is equal to 4,083, which I will place right around here. So that's Qc and our K in yellow is 4.3. So we'll place that right around here. So we can see that our Q is larger than K and it's closer to having all products. At the concentrations we have up here, we have way more products than we should at equilibrium. So our reaction is gonna try to adjust the concentrations to get to equilibrium. And what that means in terms of our number line is that our concentrations are gonna shift so that Q can get closer to K. Since our shift is to the right, and it's moving towards all reactants, our reaction is going to favor reactants to get to equilibrium. So when Q is greater than K, like here, we're going to favor reactants... reactants. And then the last scenario when Q is less than K our reaction will favor products. And we can show that also on our number line. If we had a different set of concentrations, where Q was less than K, which I will show using this color here. If we had, say, a Q value around here then our shift would be to the right towards making more products and therefore that would mean our reaction is gonna try to reach equilibrium by favoring the forward reaction. So that's how you calculate Q and how you use it to see how the reaction concentrations will shift to get to equilibrium. In our next video, we'll go over an example problem using Q and trying to figure out how the reactant concentrations will shift for another reaction.