If you're seeing this message, it means we're having trouble loading external resources on our website.

If you're behind a web filter, please make sure that the domains *.kastatic.org and *.kasandbox.org are unblocked.

Main content

Bohr model radii

Using equation for Bohr model radii to draw shell model for n=1 to 3, and calculating the velocity of a ground state electron. 
 

 

.
Created by Jay.

Want to join the conversation?

  • hopper jumping style avatar for user teyjus darshan
    Is this equation applicable only hydrogen atom?
    (35 votes)
    Default Khan Academy avatar avatar for user
  • female robot amelia style avatar for user Aditya Birla
    According to the equation - rn = n2*r1
    the radius when n = 1 =1*r1
    the radius when n = 2 =4*r2
    the radius when n = 3 =9*r3
    So distance between K and L shell = 3r1
    Distance between L and M shell is 5r1
    However in periodic table we learn that the distance between the shells of an atom keep on decreasing but here they are increasing.
    How?
    Thanks.
    (6 votes)
    Default Khan Academy avatar avatar for user
  • piceratops ultimate style avatar for user Alex J. Mercer
    If the electrons have a specific range of distance from the nucleus, then that would mean that an electron could be actually anywhere inside that fixed "donut-shaped" orbit. Wouldn't it be very difficult for scientists to predict the actual position of an electron at a given time ?
    (2 votes)
    Default Khan Academy avatar avatar for user
  • duskpin ultimate style avatar for user Aryan Rajvansh
    What are principal quantum numbers?
    (2 votes)
    Default Khan Academy avatar avatar for user
  • duskpin ultimate style avatar for user Aryan Rajvansh
    FROM where did the Rydberg constant derived?
    (2 votes)
    Default Khan Academy avatar avatar for user
  • blobby green style avatar for user keely.koch
    Would the radius of the n= ∞ energy level be infinity?
    (1 vote)
    Default Khan Academy avatar avatar for user
  • spunky sam orange style avatar for user Braxton Fuller
    If you had to do this with the flow of the cell through the veins between the Right ankle to the left, How would you write that out? Since atom's function don't touch anything?
    (1 vote)
    Default Khan Academy avatar avatar for user
    • male robot hal style avatar for user Charles LaCour
      The idea that atoms are mostly empty space or that nothing touches at an atomic level is not really accurate. Saying this you are using the loose idea of what empty space is and what it means to touch something in everyday life and not a technical scientific definition of what empty and touching means.

      What is empty space? The concept of something occupying space come from our everyday concept of physical objects occupying a volume of space and that there is something there. When you start to look at things at an atomic and sub-atomic scales this idea starts to break down. Fundamental particles are essentially points with no volume that have associated fields that may or may not interact.

      Saying that that matter particles don't ever occupy the same space and interact via fields but this is also true at every day macroscopic scales as well.

      From a scientific perspective when you touch the surface of a table the electromagnetic fields and the Pauli exclusion principle come into play. As your finger gets closer to the table there is a slightly attractive force between the outer electrons in the atoms in your finger and the table and the nuclei in these atoms, this is called the van der Waals force. As the atoms in your finger and the table get even closer the Pauli exclusion principle begins to push the electrons in the atoms of your finger and the table apart. It is at the point where the Van der Waals force and the force from the Pauli exclusion principle cancel each other out it when your finger is technically touching the table.

      So in the end the idea that matter is just empty space and things don't touch is not an accurate statement. It is using the more flexible common speech definition of touch in a way that it it doesn't apply.
      (2 votes)
  • leaf green style avatar for user Moly
    does n represent the periods of the periodic table ? if not what ?
    (0 votes)
    Default Khan Academy avatar avatar for user
  • female robot amelia style avatar for user Aditya Birla
    In the video,is the r1 only for the hydrogen atom(Bohr's) or does it hold the same for all radii of the atoms
    i.e is the r1 universal or does it change from element to element?
    Thanks
    (1 vote)
    Default Khan Academy avatar avatar for user
  • leaf orange style avatar for user aarjavdua
    Is this for hydrogen atom or for any atom?
    (1 vote)
    Default Khan Academy avatar avatar for user

Video transcript

- [Voiceover] If you didn't watch the last video because there was too much physics, I'll just quickly summarize what we talked about. We went over the Bohr model of the hydrogen atom, which has one proton in its nucleus, so here's the positive charge in the nucleus, and a negatively charged electron orbiting the nucleus. And even though this is not reality, the Bohr model is not exactly what's happening, it is a useful model to think about. And so we just assumed the electron was going in this direction So counter-clockwise around which gives our electron a velocity tangent to our circle, which we said was v in the last video. And in the last video, we calculated this radius. So we calculated the radius of this circle, and we said this was equal to r one. So r one turned out to be five point three times 10 to the negative eleventh meters, which is an important number. And we also derived this equation, right. So r for any integer n is equal to n squared times r one, for example, if you wanted to calculate r one again. So the first allowed radius using the Bohr model is equal to one squared times r one. And so obviously one squared is one so r one is equal to five point three times 10 to the negative eleven meters. And so when n is equal to one, we said this was an electron in the ground state, in the lowest energy state for hydrogen. We'll talk about energy states in the next two videos. So this is a very important number here. So this is, this number right here, is the radius of the smallest orbit in the Bohr model. In the previous video, we also calculated the velocity or we came up with an equation that you could use to calculate the velocity of that electron. If you go back to the previous video, you'll see the equation that we derived was the velocity is equal to the integer n times Planck's constant divided by two pi m times r, and we figured this out using Bohr's assumption for quantised angular momentum and the classical idea of angular momentum. So if we plug in some numbers here, we can actually solve for the velocity of this electron cause we're gonna take this radius and we're gonna plug it in down here and then we know what these other numbers are. So we said n was equal to one, so we're talking about n is equal to one so we're going to plug a one to here. So this will be a one. The velocity is equal to one times Planck's constant, six point six two six times 10 to the negative 34 divided by two pi times m. And we're talking about the electron so m was the mass of our electron, which is nine point one one times 10 to the negative 31st kilograms. And finally, for n is equal to one, this was our allowed radius so we can plug this in for our radius, five point three times 10 to the negative 11. So if you do all that math, I won't take the time to do it here, but you'll get a velocity approximately equal to, approximate sign, two point two times 10 to the sixth and your units should work out to meters per second so that's the velocity. So going by the Bohr model, you can calculate the radius of this circle here so you can calculate this radius, and you can also calculate the velocity. And,again, this isn't reality but we'll use these numbers in later videos so it's important to figure out where they came from. So this is the radius of the smallest orbit allowed using the Bohr model but you can have other radii, and we can calculate the radii of larger orbits using this equation. So we're just gonna use different values for n. So we started off with n is equal to one. Let's use the same equation and let's do n is equal to two. So let me go ahead and rewrite that equation down here. Let's get some room. So r for any integer n is equal to n squared times r one. Let's do n is equal to two here. So n is equal to two so let's go ahead and plug in two. So we'd have two squared times r one. So r two, the second allowed radii or the second allowed radius I should say, is equal to four times r one. So if we're thinking about a picture, let's say this is the nucleus here and then this tiny, little radius here is r one. If we wanted to sketch in the second allowed one, it would be four times that so I'm just going to approximate. Let's say that radius is four times that so this is r two, which is equal to four times r one. And so we sketch in the radius of this next radius here, this next allowed radius, using the Bohr model. We could figure out mathematically what that's equal to because we know r one is equal to five point three times 10 to the negative 11 meters. And so if you do that calculation, four times that number gives you approximately two point one two times 10 to the negative 10th meters. So this is our second radius when n is equal to two. Let's do one more when n is equal to three so let's get a little bit more room here. So when n is equal to three, this radius will be equal to three squared times r one. So once again, we're just taking three and plugging it into here and so three squared is, of course, nine. So this would be equal to nine times r one so our next allowed radius will be nine times r one. And I'm sure I won't get this accurate, but it's a lot bigger. So this will be r three is equal to nine times r one. So I won't even attempt to draw in that circle, but you get the idea. And we could do that math as well, so nine times five point three times 10 to the negative 11 meters would give you approximately four point seven seven times 10 to the negative 10th meters. And so these are the different allowed radii using the Bohr model so you can say that the orbit radii are quantised, only certain radii are allowed so you couldn't get something in between. You couldn't have something in between in here according to the Bohr model so this is not possible. And these radii are associated with different energies and that's gonna be really important and that's really why we're doing these calculations. So we're getting these different radii here and each one of these radii is associated with a different energy. So, again, more to come in the next few videos about energy, which is probably more important.