Main content
Chemistry library
Course: Chemistry library > Unit 8
Lesson 2: Periodic table trends- Periodic trends
- Atomic radius trends on periodic table
- Atomic and ionic radii
- Mini-video on ion size
- Ionization energy trends
- Ionization energy: period trend
- First and second ionization energy
- Electron affinity: period trend
- Electronegativity
- Electronegativity and bonding
- Metallic nature
- Periodic trends and Coulomb's law
- Worked example: Identifying an element from successive ionization energies
- Ionization energy: group trend
© 2023 Khan AcademyTerms of usePrivacy PolicyCookie Notice
Metallic nature
Properties of metals and how we can explain their properties using the electron "sea" model. Created by Sal Khan.
Want to join the conversation?
- How about graphene? Why does it conducts electricity so well if carbon is not a metal?(39 votes)
- Carbon normally forms 4 bond to each other, graphene however has a structure where every carbon atom is bonded to three other carbon atoms, there is therefore one electron free to move between the graphene layers for every Carbon atom. These free electrons allow graphene to conduct electricity similar to other metals.(99 votes)
- Isn't gallium also a liquid at room temperature.(11 votes)
- Not exactly, if you assume room temperature being 25 Celsius. But if you place a sample of gallium on you hand it will melt, because your body temperature is around 37 Celsius (unless you are a zombie or a vampire).(58 votes)
- AtSal refers to mercury as being a metal that is liquid at room temperature. Why is this one metal liquid and so unlike the other metals all around it? 1:35(22 votes)
- There is a relatively new study that suggested that it's because of relativistic effects on the electrons of mercury: the nucleous is big enough so electrons have to orbit at high enough velocities that they become heavier and that makes them get closer to the nucleous than it's expected so interactions between every mercury atom becomes more difficult and weaker. This effect is observed too in the rest of big atoms of course, making them actually heavier for their size because of their electrons orbiting so fast, and I suspect it will lower their interaction forces, therefore melting point too.
Check out this video from periodic videos where they explain this in more depth:
https://www.youtube.com/watch?v=NtnsHtYYKf0(20 votes)
- The density of gold is more than mercury than why gold floats on mercury ?(2 votes)
- Gold sinks in Mercury. If you have a small ball of gold in mercury then it will sink. However, if you have a flake of gold, it will float, this is due to three main factors:
1) the mass of the gold
2) the surface area of the gold
3) the surface tension of mercury
all three of these work together to allow the flake of gold float.(15 votes)
- Atsal says that elements on bottom left of periodic table which have bigger radius and are less electronegative are more likely to lose electron ........than why best conductors are present in transition metals(silver)? 6:58(7 votes)
- 6:58
I'd suggest watching the whole video again if you odn't understand, but here's my understanding of this;
From other videos, Sal said that electrons are found in an 'area' / 'space' around the nucleus (protons and neutrons). As arnvnarula said, the electrons can thus move more freely due to multiple bonds to other atoms. Freely moving electrons help the electricity flow through instead of stopping thus, thus transition metals are better conductors.
c:(1 vote)
- Q:whats stronger than diamond(4 votes)
- Carbyne, double or triple bonded carbon atoms.(15 votes)
- What is a mixture of melted metals called.(3 votes)
- A mixture of metal in a single solid is called an alloy. For example steel is an alloy (mixture) of carbon and iron and stainless steel is an alloy of chromium and iron. Hope this helps :)(12 votes)
- why is the diamond the most hardest matter on earth
what is its electronic configuration(3 votes)- Diamond is an allotrope of the Carbon, which is a extremely hardest substance with high refractive index.
It is a giant molecule of carbon atom by strong covalent forming a rigid 3-Dnetwork structure, which is responsible for its HARDNESS.
It`s electronic configuration is:[He] 2s2 2p2 (It is same as carbon because diamond is a form of carbon, So don't get confused)(9 votes)
- In the periodic table, which are the metals among the
FIRST TEN ELEMENTS
?(4 votes)- Lithium and Beryllium are metals, boron is a metalloid, carbon, nitrogen, and oxygen are non-metals, fluorine is a halogen and neon is a noble gas. Hydrogen is a gas at room temperature.(6 votes)
- It was mentioned in a previous video that Silver is the best conductor. How come when it is far away from being a group 1 metal?(4 votes)
- It is already explained on the other posts. That is because Silver is a transition metal (which has a special structure), whose atoms have outer electrons tied to many atoms. Thus, the electrons can move freely from an atom to another, So, when the electrons move freely around the structure, the metal conducts electricity.(6 votes)
Video transcript
Voiceover: What I want to do in this video is discuss what it means to be a metal, or metallic in nature. First, let's just think about the metals that we encounter in everyday life, or based on our experience
the things that we associate with being a metal. The elements that really
jump out at us as metals or we always refer to,
"Hey, that's a metal, "or that's metallic,"
are things like iron, or nickel, or copper, or silver, or gold, or aluminum, or at least for me, these are the ones that
immediately pop out. I've seen these things before, and they all feel like metals to me, but also think about what's
true about these things and as we'll see many other elements on the periodic table that give them this metallic nature. What do we associate with
having a metallic nature? One is that these things can be shiny. These things tend to be shiny. There's kind of a gloss
when light shines on it. They're not just kind of a matte color. They look metallic literally. That's sometimes a word
that's used for it. It has a metallic shininess to it. Another thing that we associate with it is that they tend to be fairly dense. If I take a metal, a block of a metal and if I drop it into water, I imagine that sinking, not floating on top of the water. We also imagine them having a very high melting point, that they tend to be solid at room temperature. Solid at room temperature. As we'll see, this is true of all metals except for one of them which is mercury which is shiny but at room temperature as you might be familiar
is in its liquid form. Now the other things that
I associate with a metal is that I can make things out of them. I can bend them and shape
them in different ways. I think of aluminum foil. I can bend it. It's not just going to crack. I can bend it and put it
into different shapes. Even things like iron it might take a lot of pressure to do it, but they're bendable, they're malleable, and definitely things like
gold and silver and copper you can actually mold into
different types of jewelry. If you put pressure on it, it's more likely to bend than crack and just kind of shear off. So let's put malleability.
They're malleable. The other thing I associate with metals is that they conduct electricity well. Conduct electricity. A place that you'll see metal in your life is if you open up your electronics you'll see wires that might
be made out of copper, or you might have components that are made out of other metals like gold, or silver, or whatever else. Given that these are
some of the properties that we associate with metals, let's think about what's happening at the atomic level to give these elements these properties. The way I think about it let's just go with copper for a second. Let's just imagine a block of copper at the atomic level. Let's say this is one copper nucleus right over there, and it has its sea of electrons. It has its sea of electrons, or not its sea of electrons. It has all of its electrons
in their various orbitals. We'll talk about sea of
electrons in a second, but this is kind of its cloud of electrons I should say. So this is electron cloud. The electrons are just
jumping around in this cloud. It's really a probability density, or there's kind of a certain probability that could be at any point in that cloud. Let's imagine a big solid piece of copper. You would have a bunch of these. You would have a bunch
of these all together, all forming the solid. What allows metals to be malleable, to do things like conduct electricity which is the movement of electrons, is essentially that they're very willing to share electrons with each other. By sharing electrons, so you can imagine this is one copper atom
and that's another, let's say they're sharing some electrons, that's what allows the electricity or this flow of electrons to happen. If these electrons are loosely bound, then if you put a potential
difference of voltage, let's say that you put
a potential difference so that this side is more negative, and then this side is more positive, then the electrons are going to want to get away from the negative charge, and move towards the positive charge. If they're relatively freely bound, they can kind of move from one cloud to the next. You kind of end up having
what's often called a sea of electrons. Let me write that down. You have a sea of
electrons which would make this conductive and that's why you see so much wire made out of copper. The sea of electrons is also what makes it malleable. If someone on this side were to put a lot of pressure this way, and on that side put a
lot of pressure that way, things that are rigid
would just kind of crack and break, right, would
just break right over there, but because you have the sea of electrons it allows it to be malleable. This part might just
bend down a little bit, that part might bend up, but they're not going
to, the metallic bond is not going to break. Given that this metallic nature really comes from the willingness of these atoms to share
electrons with each other, to create the sea of electrons, I encourage you to pause this video and think about which atoms
on the periodic table, or which elements are
more likely to do that, to share electrons with
others and with each other. Really, this is the same principle that we thought about ionization energy, and electronegativity. So pause the video. I'm assuming you've had a go at it. So which elements are most likely to share electrons? We've already seen that
if we're on the left side of the periodic table of elements, Group One for example, they only have one valence electron. It would be very hard for them to get enough electrons to
complete that outer shell. If they get rid of that
one valence electron, they can go to a more stable state. They really want to give away electrons, and the ones over here, they're so close if we talk about the halogens, they're one electron away from completing their outer shell. They're greedy. They want
to hog these electrons. They tend to be electronegative. The noble gases, they're done. They definitely don't
want to share electrons with anyone. They're kind of in a very stable state. Now, the other thing
that we've talked about is as we go down a group, our atoms are getting larger,
and larger, and larger. So the outermost, that 55th electron in cesium is much more loosely bound because it's further away than say the third electron in lithium. So just as we saw as the elements in this bottom left have a
very low ionization energy. It doesn't take much energy to remove an electron from them, these are the ones that are most likely to share electrons, and these actually have the
highest metallic nature. So high metallic, high metallic nature. The ones on the top right, these are going to be the opposite. They're very unlikely to share electrons. They're very electronegative. They have a very high ionization energy. They have a low metallic nature. I could imagine some things are popping into your brain at this point. We started thinking of the elements that in our everyday life
we associate with metals, but what I'm saying is
that these things over have an even higher metallic nature, but what about something like calcium. Every day what I imagined
when I typically, or when a lot of people imagine calcium, they think of kind of a chalky, a white chalky substance, very rigid, not very malleable, not very good, not very shiny, not very good at conducting electricity. Based on what I just told you, this would have a higher metallic nature than something like aluminum. What you have to remind yourself is that what you see is
not actually pure calcium, that kind of chalky thing. That's calcium carbonate. Pure calcium, actually, this is actually a picture of pure calcium. It is shiny. It does have
these metallic properties. The general trend here
is that all of these, these are very high in metallic nature, and these are very low metallic nature which also makes you probably realize while most of the periodic table is a metal of some form. If aluminum is a metal, and all of these things have a higher, have a higher metallic nature
than all of this stuff, all of this stuff are metals, and that is the case. The S block, the D block, the F block, these are all metals. Then a good chunk of the P block, a good chunk of the P block are considered metals,
and then these are kind of sometimes referred to as metalloids, Only this section of the periodic table is not considered a metal. That makes sense. Nobel gases, they are gases. They don't, they're not very reactive. they don't bond so they don't form kind of a structure that can even do this type of thing. These other ones over here even carbon when it is formed a lattice, it does not conduct electricity well. It tends to not be so malleable if you think about
something like a diamond, or if you think about, well, a diamond might be the best example of that. Anyway, hopefully this gives you a sense of metallic nature and the trends in the periodic table. High metallic nature, and
as you go to the top right, lower and lower metallic nature.