Main content
Health and medicine
Course: Health and medicine > Unit 3
Lesson 14: Shock- What is shock?
- Shock - hemodynamics
- Shock - oxygen delivery and metabolism
- Shock - diagnosis and treatment
- Cardiogenic shock
- Sepsis: Systemic inflammatory response syndrome (SIRS) to multiple organ dysfunction syndrome (MODS)
- Septic shock - pathophysiology and symptoms
- Septic shock: Diagnosis and treatment
- Hypovolemic shock
- Neurogenic shock
- Obstructive shock
- Anaphylactic shock
- Dissociative shock
- Differentiating shock
© 2023 Khan AcademyTerms of usePrivacy PolicyCookie Notice
Neurogenic shock
Created by Ian Mannarino.
Want to join the conversation?
- As said here neurogenic shock can occur in trauma like spinal cord injury, why is it so that after the trauma only sympathetic supply to the heart is affected and heart rate goes down meanwhile nothing happens to the parasympathetic supply of the same.(5 votes)
- That is a great question. The sympathetic nervous system (SNS) has nerve roots in the thoracolumbar region of the spinal cord (T1-L2 or L3), while the parasympathetic (PNS) has craniosacral (above C1 and below S1) nerve roots. If there is disruption of the spinal cord, it will tend to affect some (perhaps all with a cervical insult) areas of the SNS, while the PNS is largely spared. (The only sacral parts of the PNS affect the bladder and genitals). For the heart in particular, SNS innervation is upper thoracic, and PNS innervation is via cranial nerve 10 (the vagus nerve originating at the medulla of the brainstem), so with a disruption above T2 or so, the heart's SNS can be knocked out leaving the PNS unopposed.(5 votes)
- The Sindrome of the BROKEN HEART can be classifie as a problem of the NEUROGENIC SHOCK ?(1 vote)
- No, broken heart syndrome (also known as takotsubo cardiomyopathy) effects the heart- not systemically like neurogenic shock. It's (thought to be) caused by an intensely stressful situation, such as a family member dying (although I've had a patient come in with takotsubo cardiomyopathy after moving house). It causes cardiomyopathy (enlarged or inflamed heart) and the symptoms are treatable and reverse eventually...(2 votes)
- what is the difference between neurogenic shock and spinal shock?(2 votes)
- Does fluid intake affect blood volume such as not drinking enough water?(1 vote)
- Yes. We have to hydrate properly in order to maintain a proper fluid balance. If we start to lose too much fluid, whether it be from using the bathroom, sweating, and even through breathing, we become dehydrated. On the other hand, take someone who is getting IV fluids and their kidney function is doing poorly, you can develop fluid overload. This fluid being in excess will start to accumulate into the lungs and cause respiratory distress, and if not treated within time, may lead to respiratory failure.(1 vote)
- Would positive inotropes (eg. dopamine) be given? Since neurogenic shock affects the tonicity of the heart, and inotropes work to improve contractility?(1 vote)
- One example claims it is used for shock secondary to trauma:
http://www.drugs.com/uk/dopamine-40-mg-ml-sterile-concentrate-spc-453.html
Thus it seems you may be correct. I would assume that this is on a case-by-case basis, though.(1 vote)
- One of the symptoms is hypothermia (decreased body temperature) can occur in neurogenic shock due to loss of sympathetic tone leading to decreased core circulation, excessive loss of heat and massive decrease in body temperature. Patient feels very cold, with warm limbs and the rest of the body is cold to touch. so it doesn't cause skin heat(1 vote)
- Is that like having aneurysms throughout the circulatory system?(0 votes)
- Aneurysms are due to a localized default in the wall of an artery (vein aneurysms is a very rare and -most of the time- benign condition). In the case of a neurogenic (we can also say "vasogenic") choc, all vessels with smooth muscle (both arteries and veines) relaxe, making the blood pressure drop.(2 votes)
- how many shocks can you have in the same time(0 votes)
Video transcript
So, here I have outlined
just a general concept of the cardiovascular system. We have the heart over here,
the arteries deliver blood to the organs, and the veins deliver
blood back from the organs to the heart. So, the reason I'm going
to draw this is because the cardiovascular system is
critically affected in neurogenic shock. Now, what is neurogenic shock? Neurogenic shock occurs
when the nervous system is no longer functioning properly. And this can happen
from a number of things. Sometimes, and actually most
frequently, it's from trauma, so if the patient has something
occur to their spinal cord where it's severed or an epidural
goes wrong and some nerves are damaged, that can
lead to neurogenic shock, if it's severe enough. Now, what neurogenic shock
essentially is is loss of vascular tone and pooling
of peripheral blood. So, the nervous system provides
tone to the blood vessels and also to the heart. And this tone is known
as "sympathetic tone". It's kind of like muscles. If you think about somebody
who's flexing versus not flexing, of course
there's a certain tightness that the muscles undergo when you flex. Now, that's really happening
to the blood vessels at all times, and it's
done to really maintain blood pressure. Blood vessels are somewhat
tightened and squeezed down a little bit to allow
blood to flow through. The idea is, as blood flows
through the vascular system, it's going to be maintained
in a forward direction by the blood vessels because if it
hits up against the wall, the blood vessel bounces it back
and pushes the blood forward. If it didn't do this, if
there was no vascular tone, blood would run up against
the wall and lose a lot of its energy, it would be really dampened. So, it's kind of like a trampoline. When you're bouncing on a
trampoline, if the trampoline is taut enough, you'll be able
to bounce up and down really easily, right? However, if you think about
loosening the trampoline, if you loosen the material
on the trampoline, you won't be able to bounce
as high, and so that's the same thing that happens here. When you loosen the blood vessel,
it won't be able to bounce blood forward as well. So, like I said, the nervous
system provides this tone, this vascular tone, to both
the arteries and the veins. So, what happens if we shut
down this nervous system? Well, the blood vessels
will lose their tightness, both the arteries and the
veins, so I'm going to go ahead and erase this to show that
the blood vessels kind of become floppy. And I'm going to really
exaggerate this by making them really wide, so both the
arteries and the veins become very floppy. So you can see, if this
happens in the arteries, blood is not really going to
make it to the organs as well. It's supposed to bounce off
and bounce forward, but that's not really happening anymore,
so it just kind of slowly makes it to the organs, so you have shock, you have decreased oxygen
delivery, decreased tissue perfusion to the organs. And then, blood of course trying
to flow back to the heart, won't be able to, it'll just kind of pool. It'll just stay in the venous
system and only a minimum amount will return to the heart. So this will actually affect
the cardiac output of the heart. Remember blood pressure and
tissue perfusion are related to cardiac output and vascular resistance, systemic vascular resistance. So up here in the arteries,
we've already shown that this system vascular resistance is decreased, so that's going to lead to
a decrease in blood pressure and tissue perfusion. So, let me actually go
ahead and write that out. Blood pressure and O2 delivery. Tissue perfusion is oxygen delivery. So both of these will go down
because resistance in the arteries are going down. And now also, the veins
aren't able to deliver blood back to the heart. And if you can recall, cardiac
output is stroke volume times heart rate. So, if we decrease the amount
of blood going back to the heart, that means there's
going to be less blood that the heart can squeeze
forward, so that means less stroke volume, right? Decreased delivery of blood to
the heart leads to decreased stroke volume, which means
decreased cardiac output. And that further worsens blood
pressure and further worsens oxygen delivery. You're shutting down the
cardiovascular system by not being able to maintain vascular tone. Something else that you
see in neurogenic shock is, the nervous system, the
sympathetic nervous system, controls the heart rate. Now, if you no longer have the
input of the nervous system, the heart rate is going to drop. And so, we go back to our
equation, heart rate drops, cardiac output drops even
further, and blood pressure will drop, and then oxygen
delivery will also drop. So this is truly shock. Tissue perfusion is just
completely demolished and so is blood pressure. So, the entire cardiovascular
system is just not able to maintain blood flow, and
that leads to a shut down of oxygen delivery. So, let me go ahead and scroll
down so we can think about some of the symptoms. I'm going to keep this somewhat
in view so you can still ponder it and think about it. But the symptoms of neurogenic
shock will be those of decreased oxygen delivery
such as altered mental status, decreased urine output. You think about anything that
needs oxygen, any organ that needs oxygen, and think
about what would happen if it wasn't getting oxygen; it
would start to shut down. So, organ dysfunction can occur... and a major symptom
that you see specific to neurogenic shock is bradycardia. Now, this is something you
should really be thinking about. This is really the only
shock that has bradycardia. Remember, all of the other
shocks are going to try to increase heart rate, speed it
up, to try to deliver oxygen and deliver blood to the body. But here, we have the heart
rate dropping because it's no longer getting input from
the nervous system, and so, we have a low heart rate, bradycardia. So, this is a key symptom
of neurogenic shock. And, another main symptom
that I want to touch on is warm skin. Warm skin occurs because
of the dilation of all blood vessels. So these blood vessels
in the skin will dilate, they'll enlarge like we
were showing up here, so blood can flow through
the skin more easily. And that's a problem because
it diverts blood away from vital organs such as the brain,
the lungs, and the heart. And so, the treatment of
neurogenic shock will focus on trying to maintain this blood
pressure, so you'll give medication known as "pressers". Pressers allow the blood
vessels to clamp back down. If you clamp the vessels
down, it directly is affecting the issue in neurogenic shock. And, you'll also give a
lot of IV fluids to try to maintain the fluid volume. If you increase the amount
of fluid in the vasculature, it's more likely that you'll
be able to push it forward and deliver blood to the system. So, IV fluid and pressers help
maintain the blood pressure. And a final medication that
you'll see is atropine. Atropine works by blocking
the parasympathetic nervous system. So, it's like stopping the
"rest and relaxation" part of the nervous system, and it
increases the "fight or flight". So increasing the fight
or flight response, will increase the heart rate. So giving atropine will
help raise up the heart rate to increase cardiac output
and to improve the pumping of blood throughout the
cardiovascular system.