Main content
Health and medicine
Course: Health and medicine > Unit 2
Lesson 3: Heart depolarization- Membrane potentials - part 1
- Membrane potentials - part 2
- Permeability and membrane potentials
- Action potentials in pacemaker cells
- Action potentials in cardiac myocytes
- Resetting cardiac concentration gradients
- Electrical system of the heart
- Depolarization waves flowing through the heart
- A race to keep pace!
- Thinking about heartbeats
- New perspective on the heart
© 2023 Khan AcademyTerms of usePrivacy PolicyCookie Notice
Membrane potentials - part 2
Continue to explore how a cell that is permeable to one ion can become charged (either positive or negative) if there is permeability and a concentration gradient. Rishi is a pediatric infectious disease physician and works at Khan Academy. Created by Rishi Desai.
Want to join the conversation?
- Atyou said you don't know what 'V' stands for. Isn't it referring to Voltage? 6:28(27 votes)
- Yup. Membrane potential refers to a potential difference, a difference in charge across the membrane. Another name for potential difference is voltage.(33 votes)
- I am curious about one thing. If the resting concentration of K+ inside the cell is 150mMol/L and is 5 mMols/L outside the cell, then why is the membrane potential negative? Shouldn't it be positive since there are more K+ inside than outside at any given time? Thanks!(4 votes)
- The K+ on the inside and outside are coupled with negatively charged proteins and therefore the cell and the outside are neutral. Now when the concentration gradient drives K+ outside, the cell only allows K+ to get outside as (certain) cell gates are only permeable to potassium (specifically) but their partners which are the larger (negative) protein molecules, can't get through the gates.
So , as the positively charged K+ cations move outside , the negatively charged protein molecules remain on the inside of the cell.
Therefore the cell ends up being more negatively charged than its surroundings and thus gets a NEGATIVE POTENTIAL!(24 votes)
- In the equation, you said the constant is 61.5. My teacher has been using 58. Which is correct?(3 votes)
- The constant Rishi is using is based on the Nernst Equation (google/wikipedia it), which can be calculated by ''(R*T)/(F)'' (assuming you are using the natural log, otherwise you add log10(2.72) in the denominator, which you have to in Rishi's case) While R & F are constants, the temperature, T in kelvin, will actually change your constant. By plugging in different values for temperature, you can find out that in fact, both Rishi and your teacher are correct, although at different temperatures. Rishi used 37 Celcius (310.15 Kelvin) for his calculations, your teacher used 20 Celcius (293.15 Kelvin) for his. At thus, Constant(310.15)=61.537mV, while Constant(293.15)=58,164mV.
TL;DR Rishi is right because he did the calculations at body temperature, which would be the most likely temperature conditions at a cell membrane of a live human being. Therefore 61.5mV is correct. This is why everyone should state their assumptions/conditions under which they answer their problem, to allow reproducibility of their data by other researchers.(13 votes)
- Literally nobody has been able to answer me this one question: if Potassium is always driven out by leak channels, why is the interior concentration of Potassium said to be higher than the exterior?(3 votes)
- Higher K+ charges are on the interior of the cell than the outside in the "starting" scenario, so the K+ flows out through leakage channels. The concentration gradient drives K+ out, because in the same starting scenario the interior of the cell is more positive than the outside.
This outflow leaves anions in the cell, which re-attracts the K cations. This all stabilizes net-net at about -92mV, the equilibrium potential for K+ when the cell is only permeable to K+.
Hopefully that all made sense to you, and even more hopefully, you got your question answered.(9 votes)
- Atyou say that if there's a concentration gradient but no permeability, then there will be no membrane potential because there's no way for the ions to leave. Why would that mean there's no membrane potential if there'd still be a voltage difference (as indicated by the concentration gradient)? 5:10(6 votes)
- At, Rishi mentions the the voltage created through membrane potential of ions. If the equation for it is a constant x LN ([out]/[in]) , then CL-, which has a negative potential, should have a higher concentration inside the cell than its surroundings. Wouldn't this want CL- to flow out of the cell then due to concentration gradient?? (Rishi states it flows inwards) 8:31(5 votes)
- There is actually a higher concentration of CL outside the cell than inside the cell in the body, thus creating a "desire" for the ion to move from the higher concentration, outside, to a lower concentration, inside. Hope this helps!(1 vote)
- at 8.20, when Dr. Rishi tells us the concentration gradients of each of the ions, he tells us about the direction of flow of ions. Does the sign of the membrane potential (positive or negative) give us the direction of flow of ions?(4 votes)
- It is a great video and just to let you know that the speakers says where the Vm come from as there is no letter V in the Membrane Potential....I would say that V is for Voltage which is potential and M is for membrane.(3 votes)
- Yeah, that's exactly where that comes from seeing as voltage is a measurement of the difference in potential between two points.(1 vote)
- This video refers the equilibrium potentials being properties of the ions.
Being properties with defined values, that implies that these are the equilibrium potentials for these ions in all cells.
That being said, it seems that the equilibrium potential for any given ion is dependent on the concentration and charge of the anions present in the cell.
For the equilibrium potentials of ions to be properties (i.e. they are constant and ubiquitous) wouldn't the concentration and charges of the anions in cells need to be assumed to be constant and ubiquitous also?
That is, are we assuming that the concentration and charges of anions are constant for all cells?
If not, wouldn't we expect the equilibrium potentials of ions to vary, based on the anion concentration of the respective cell?
For example, the equilibrium potential of K+ is -92mV, which means that the concentration gradient and membrane potential are equal when the membrane potential is -92 mV, thus if we changed the concentration and/or charge of the anions inside the cell were different, then the equilibrium potential of K+ would be different, too.
Finally, it looks like the equilibrium potential equation is self-referencing.
The way it's described in this video implies that the equilibrium potential of an ion is a function of a constant multiplied by the log of the ratio of the concentration of the ion outside of the cell and inside the cell.
Yet, if the equilibrium potential is a property, being constant, does that not mean that those concentrations are a function of the equilibrium potential?
I hope those questions make sense.
Any help would be very much appreciated.(2 votes)- I am afraid I am unable to follow all the questions here. The reference I am going to offer at Wikipedia does go into the chemistry of the membrane potential. You said "That is, are we assuming that the concentration and charges of anions are constant for all cells?" Well, we are assuming it is constant for all neurons, let us stay there. What I do not think is completely emphasized in this lecture is that there are experiments that show if only sodium gates were open, then the equilibrium for the cell would become +66mv because sodium would come into the cell because the anions are constant, they can't leave the cell and they are a negative charge so the sodium is attracted in and secondly sodium comes in due to passive movement by diffusion. So the cell becomes depolarized and it can not return to normal because the sodium potassium pump is disabled in this experimental example. If this happens the neuron dies. This can happen if someone eats a puffer fish, which has a toxin that has this precise effect. The second experimental scenario is if sodium gates are closed and only the potassium channels are open ( which naturally occurs with the poison of the black mamba) and if that happens, then the cell achieved a membrane potential of - 90mv. Potassium is a positive ion and it leaves the cell due to diffusion, while some return due to the anions inside the cell that attract them back, there is a net loss of potassium so the cell moves to - 90mv. But in a normal cell with all channels and pumps working, the sodium potassium pump turns on and returns 3 sodium to the outside of the cell and returns 2 potassium to the inside of the cell to a normal resting potential of -70mv. So in a normal cell the ions are returned to the "correct" side of the membrane and reestablish the resting membrane potential of -70mv. Threshold for the neuron is -55 mv. Given what I just said, how do you think that -55 mv is reached? Did you say that it must be due to the influx of sodium ions? If so you are right, sodium ions coming into the cell make it more positive. Sodium ions continue in to a normal cell and cause the cell to become + 30 mv and that change in the membrane potential signals the potassium gates to open and potassium ions leave the cell which moves it to a negative membrane potential or repolarize it. Those are the basics. Here are some additional links. You may have to copy and paste some of them as they often get corrupted in these replies. I will include a link to a biology textbook on line that you can read as well because you are an in-depth thinker and you are sure to have a bunch more questions. all the best!
In da club - Membranes & transport (video) | Khan Academy
https://www.khanacademy.org/science/biology/crash-course-bio-ecology/crash-course-biology-science/v/crash-course-biology-105
Crash Course Hank Green discusses how things move in and out of a cell
Resting Membrane Potential - YouTube
https://www.youtube.com/watch?v=HYLyhXRp298
Bozeman Biology
https://www.youtube.com/watch?v=OZG8M_ldA1M
The Action Potential, Crash Course
https://www.youtube.com/watch?v=OZG8M_ldA1M
Biology 2e - OpenStax https://openstax.org/details/books/biology-2e
Membrane potential - Wikipedia https://en.wikipedia.org/wiki/Membrane_potential(2 votes)
- Is the goal of the cell to get back to 0mV ? or does it want to say at -92mV?(1 vote)
- The goal of the cell is to maintain a membrane potential that is between -70mV and -90mV, this potential is used for a variety of things, for example the depolarisation of nerve cells or muscle cells!
Another example is the filtration of ions in the kidneys: Here the negative membrane potential is used to attract Na+ ions and pull them into the cells, along with other ions and water!
And just so you know, our cells work hard on maintaining this membrane potential, in most cells the Na+/K+ ATpase (the 2K+ in / 3 Na+ out pump he drew) uses as much as 1/3 of the entire energy that is used by our cells!(4 votes)
Video transcript
So in the last video
we talked about how you have a higher
concentration of potassium on the inside-- around
150 millimoles per liter --than you do on the
outside-- let's say around five
millimoles per liter. Just to recap some important
points we brought up, we said that
essentially what happens is that you have
these potassiums that are bound to little anions
that are the green dots there. And because the
concentration gradient is going to want to make the
potassium leave the cell, it will, and so
it'll leave the cell. Let's say this little fellow
will leave the cell here, and he'll end up on the outside. So by doing that he leaves
that anion all by itself. And if this continues to
happen, then these anions create this negative charge. And we can actually
figure out exactly what that negative charge is. It turns out that
that negative charge is going to attract
back the potassium. We said that this
potassium, then, is going to want to
swim back inside to be closer to that negative charge. And this is that
interesting idea, the idea that K leaves
behind a negative charge. And then it comes
right back and wants to be by that negative charge. And the amount of
negative charge that's going to offset
the concentration gradient is around negative 92, so
let me write that in now. So negative 92 is
the amount we know that we need to offset the
concentration gradient. That's where we left off. And now I want to do a
little thought experiment. Let's say that we come at this
cell with a little injection full of, let's say,
some positive charge. And try to ignore the
ridiculousness of what I'm saying, just for the moment. Let's just focus on the
positive charge, the fact that I'm going to pour a
bunch of positive charge into this cell. And let's assume that we
don't know exactly where this is coming from, but that
this positive charge is-- essentially, what
it's going to do is it's going to make my
cell not negative 92 anymore. It's going to make it
more positive than it is. Let's say I make it, let's
say, halfway back to zero. So instead of negative 92,
it's negative 46 millivolts. So this is the new
membrane potential, and our cell is still just
permeable to potassium. And that's really important. It's only permeable to one ion. That's potassium. So what's going to happen? Well, these potassiums--
these little guys right here --they're going to notice that
the charge is actually not drawing them back as
strong as it was before. So this potassium might see
that, and it might leave. So more potassium basically
starts leaving the cell. And if more potassium is leaving
and going on the outside, then you have more of
these little anions that are left behind. And the process continues. So these anions say, well,
if we're off by ourselves, we're going to contribute
to this negative charge. We're going to add to it,
just as it did before. And that negative 46 is
quickly going to go down again. It's going to slide back down. And the question is, how
far does it slide down? Well, it goes back to
the equilibrium point. And so if we said
negative 92 is what you need to make this
yellow squiggly attraction-- the membrane potential-- equal
the concentration gradient, if that's what's needed,
then it will slide back down to negative 92. So think about
that for a second. It's pretty powerful stuff. You can do all sorts of
funky things to this cell. You can add positive
charge or negative charge. And as long as you
maintain two things, two important things, one of
them being the concentration gradient-- so one is this
concentration gradient of 150 versus just five. That's one thing. And the other is the
permeability to only potassium. As long as you maintain
the permeability, you'll get back to negative 92. Let me even hammer
this point harder by showing you a little diagram. So let's say we
have a concentration gradient over here, and I also
have permeability over here. And this is permeability
to potassium. OK? And assuming that we only have
permeability-- so assume-- I'll write that very
clearly --the cell is only permeable to one ion. So assume only one ion
for this permeability. So if you have, let's
say, permeability yes and permeability no, and you
have concentration gradient yes and concentration gradient no,
then what do you get exactly? So let's say you have
four possibilities here. And let's say we
have no concentration gradient and no permeability. Would we get a
membrane potential? Well, no, because the
potassium would never have a way of leaving
in the first place. And it would have
no desire to leave. Now what if you have
concentration gradient-- so you have the desire to
leave-- but you don't have a way for that potassium
to actually leave the cell. Well, again, you don't actually
have any membrane potential. And the same is true if
you have a permeability, but you have no
concentration gradient. Then the potassium, again, has
no desire to actually leave. And then finally, if
you have permeability and a concentration
gradient, then you actually get down to negative
92 millivolts. So the concentration gradient
is when I use the word desire. Does the potassium
have a desire to leave? And permeability is
does it have a means? Does it have a way to leave? So these are the two things
to think about when you're thinking about whether you would
create a membrane potential or not. So if we have that setup-- let's
actually move down a little bit and make some space
and actually talk about how you actually
get your negative 92. Where in the world does that
number exactly come from? So there is a formula,
and that formula is-- I'm going to
write it out over here. It's Vm, and all that means
is membrane potential. Now, if you're like me,
the first thing you notice is that there's no V. There's
no letter V in the word membrane or potential. So how do they
come up with that? And I don't know
the answer to that. I don't know where the
V comes from exactly. But Vm stands for
membrane potential, and the formula is actually
surprisingly simple. It's 61.5. And this is a
simplified version, because there are a lot
of constants in here that get thrown
together in that 61.5. And you just take the log of
the concentration of potassium on the outside-- I'll
say K out-- potassium on the outside --over the
concentration of potassium on the inside of the cell. So you take these
two concentrations, and you get this
fantastic little formula. And you can actually--
now I can write for you potassium-- over
here we said it was equal to negative 92 millivolts. So that would be the
membrane potential. And I can even walk
through a few other ones, some other key ones. There's sodium. Let's do chloride and calcium. So a few of them-- and all of
them have the same formula. You just take their
concentrations on the inside and outside
and plug it into the formula, and you get positive
67 for sodium. You get negative
86 for chloride, and you get positive
123 for calcium. And now keep in mind, calcium
has a two plus charge. So for calcium this 61.5
actually gets changed to 30.75, and that's rounded off. But that's because of
that two positive charge. And all you do is,
as I said, throw in the concentrations on
the inside and outside. So, actually, let's even write
that down, so concentration gradient. And keep in mind exactly
which way things are moving. So concentration
gradient for potassium, I mean, really, you're looking
at a positive ion that's moving out of the cell. And for sodium you
have a positive ion, but it's moving into the cell. For chloride you have a negative
ion moving into the cell. And for calcium you
have a positive ion moving into the cell,
really just like sodium. So this is how you can think
about the four major ions that contribute to our cell's
membrane potentials.