Main content
High school biology
Course: High school biology > Unit 6
Lesson 2: RNA and protein synthesis- Molecular structure of RNA
- DNA replication and RNA transcription and translation
- Intro to gene expression (central dogma)
- The genetic code
- Impact of mutations on translation into amino acids
- RNA and protein synthesis review
- Transcription and translation
- Codons and mutations
© 2023 Khan AcademyTerms of usePrivacy PolicyCookie Notice
RNA and protein synthesis review
Key terms
Term | Meaning |
---|---|
RNA (ribonucleic acid) | Single-stranded nucleic acid that carries out the instructions coded in DNA |
Central dogma of biology | The process by which the information in genes flows into proteins: DNA → RNA → protein |
Polypeptide | A chain of amino acids |
Codon | A sequence of three nucleotides that corresponds with a specific amino acid or start/stop signal during translation |
Transcription | Process during which a DNA sequence of a gene is copied to make an RNA molecule |
Translation | Process during which an mRNA molecule is used to assemble amino acids into polypeptide chains |
Mutation | A change in a genetic sequence |
Structure of RNA
DNA alone cannot account for the expression of genes. RNA is needed to help carry out the instructions in DNA.
Like DNA, RNA is made up of nucleotide consisting of a 5-carbon sugar ribose, a phosphate group, and a nitrogenous base. However, there are three main differences between DNA and RNA:
- RNA uses the sugar ribose instead of deoxyribose.
- RNA is generally single-stranded instead of double-stranded.
- RNA contains uracil in place of thymine.
These differences help enzymes in the cell to distinguish DNA from RNA.
Types of RNA
Type | Role |
---|---|
Messenger RNA (mRNA) | Carries information from DNA in the nucleus to ribosomes in the cytoplasm |
Ribosomal RNA (rRNA) | Structural component of ribosomes |
Transfer RNA (tRNA) | Carries amino acids to the ribosome during translation to help build an amino acid chain |
Central dogma of biology
A gene that encodes a polypeptide is expressed in two steps. In this process, information flows from DNA right arrow RNA right arrow protein, a directional relationship known as the central dogma of molecular biology.
The genetic code
The first step in decoding genetic messages is transcription, during which a nucleotide sequence is copied from DNA to RNA. The next step is to join amino acids together to form a protein.
The order in which amino acids are joined together determine the shape, properties, and function of a protein.
The four bases of RNA form a language with just four nucleotide bases: adenine (A), cytosine (C), guanine (G), and uracil (U). The genetic code is read in three-base words called codons. Each codon corresponds to a single amino acid (or signals the starting and stopping points of a sequence).
Transcription and translation
In transcription, a DNA sequence is rewritten, or transcribed, into a similar RNA "alphabet." In eukaryotes, the RNA molecule must undergo processing to become a mature messenger RNA (mRNA).
In translation, the sequence of the mRNA is decoded to specify the amino acid sequence of a polypeptide. The name translation reflects that the nucleotide sequence of the mRNA sequence must be translated into the completely different "language" of amino acids.
Mutations
Sometimes cells make mistakes in copying their genetic information, causing mutations. Mutations can be irrelevant, or they can affect the way proteins are made and genes are expressed.
Substitutions
A substitution changes a single base pair by replacing one base for another.
There are three kinds of substitution mutations:
- Silent mutations do not affect the sequence of amino acids during translation.
- Nonsense mutations result in a stop codon where an amino acid should be, causing translation to stop prematurely.
- Missense mutations change the amino acid specified by a codon.
Insertions and deletions
An insertion occurs when one or more bases are added to a DNA sequence. A deletion occurs when one or more bases are removed from a DNA sequence.
Because the genetic code is read in codons (three bases at a time), inserting or deleting bases may change the "reading frame" of the sequence. These types of mutations are called frameshift mutations.
As this example illustrates, a frameshift mutation changes how nucleotides are interpreted as codons beyond the point of the mutation, and this, in turn, may change the amino acid sequence.
Common mistakes and misconceptions
- Amino acids are not made during protein synthesis. Some students think that the purpose of protein synthesis is to create amino acids. However, amino acids are not being made during translation, they are being used as building blocks to make proteins.
- Mutations do not always have drastic or negative effects. Often people hear the term "mutation" in the media and understand it to mean that a person will have a disease or disfigurement. Mutations are the source of genetic variety, so although some mutations are harmful, most are unnoticeable, and many are even good!
- Insertions and deletions that are multiples of three nucleotides will not cause frameshift mutations. Rather, one or more amino acids will just be added to or deleted from the protein. Insertions and deletions that are not multiples of three nucleotides, however, can dramatically alter the amino acid sequence of the protein.
Want to join the conversation?
- I really love Khan academy and use it often for school. I struggle to cite khan academy in APA format because there is often no date or author included. Can you tell me where to find this?(18 votes)
- 1. What does affect the mutation in DNA?
2. What is the result of a change in the amino acids?(5 votes)- not sure the answer for your first question but for #2 a change in amino acids results in a different polypeptide which leads to a different protein being formed. Sometimes it's not that big of a deal but if you look up tay sachs it can also be devastating if the protein is super important(1 vote)
- Concerning the nucleotides/nitrogen bases that "latch" themselves on the mRNA that transcribes the DNA-molecule..
1. Are they just floating around in the cytoplasm? Do they enter the nucleus when it's time for transcription?
2. Is the tRNA floating around in the cytoplasm, waiting for mRNAs that it can latch amino acids onto?
3. There is a massive amount of proteins. How can this be with the seemingly limited combination of amino acids that are created during the synthesis?
Thank you in advance.(5 votes) - Why is protein synthesis a two-part process(2 votes)
- The two parts consist of transcription and translation.
Transcription is the step where the genetic information from DNA is copied onto mRNA and sent out of the nucleus.
Translation is when the the mRNA ticks to a ribosome and tRNA joins mRNA to form an amino acid chain and eventually a polypeptide(7 votes)
- If amino acids are not made during protein synthesis then how and where are they made?(4 votes)
- Amino acid synthesis is the set of biochemical processes by which the amino acids are produced.(3 votes)
- what is nonsense mutation?(4 votes)
- nonsense mutation results in a stop codon in a place where an amino acid should be causing translation and cause translation to stop midway(1 vote)
- why do changes in DNA lead to mutations but changes in the RNA code do not lead to mutations?(2 votes)
- RNA is dependent on DNA. So a change in DNA results in a change in RNA. Hope this helps!(3 votes)
- Does anyone have some sort of information of splicing/editing cause I can't find information on it anywhere(4 votes)
- I'm not sure if there is any info on splicing on Khan Academy, though I did find this site which seems to do the job.
https://sciencing.com/description-gene-splicing-dna-technique-4718.html(0 votes)
- Structures assembled to make protein.(3 votes)
- where does transcription and translation take place?(1 vote)
- In eukaryotic cells, transcription occurs in the nucleus, and translation occurs at the ribosomes in the cytoplasm.
In prokaryotic cells and bacterium, both transcription and translation happen in the cytoplasm, because these types of cells don't have nucleuses. Does this help?(4 votes)