If you're seeing this message, it means we're having trouble loading external resources on our website.

If you're behind a web filter, please make sure that the domains *.kastatic.org and *.kasandbox.org are unblocked.

Main content

Metallic bonds

Metallic bonds result from the electrostatic attraction between metal cations and delocalized electrons. The nature of metallic bonding accounts for many of the physical properties of metals, such as conductivity and malleability. Created by Sal Khan.

Want to join the conversation?

  • orange juice squid orange style avatar for user Steve Nelson
    Why is a metallic bond of the same atom different from a non-polar covalent bond? If iron is sharing electrons with another iron atom, they both have the same charge. How is that different from something like two oxygen atoms?
    (21 votes)
    Default Khan Academy avatar avatar for user
    • aqualine sapling style avatar for user Beaniebopbunyip
      In a metallic bond, each metal atom is surrounded by lots of other metal atoms, and they all share their valence electrons. When two oxygen atoms bond, they become a molecule and don’t interact much with other molecules. A metallic bond behaves more like one big molecule (except that unlike diamond or graphite, it’s malleable because there aren’t technically any covalent bonds forming a specific crystal structure.)
      Let me know if you need more help!
      (45 votes)
  • blobby green style avatar for user hamidtarpley
    Are there any tricks to identify if a bond is covalent, ionic, or metallic? And can someone explain metallic bonds to me? I still am having trouble after watching the video.
    (5 votes)
    Default Khan Academy avatar avatar for user
    • male robot hal style avatar for user asdfrgt
      Ionic Bonds - A bond between metal and nonmetal elements. Involves transferring electrons.

      Covalent Bonds - Also known as molecular bonds. A bond between two nonmetals. Involves sharing electrons.

      Metallic Bonds - A bond exclusively between metals. It creates a bulk of metal atoms, all "clumped" together. An example of this is a copper wire or an aluminum sheet.

      Hope this helps.
      (53 votes)
  • duskpin tree style avatar for user rishikoneru2005
    Can metallic bonds only happen between atoms of the same metal? Or can two different metals have a metallic bond?
    (13 votes)
    Default Khan Academy avatar avatar for user
    • blobby blue style avatar for user P
      Two different metals can technically have metallic bonds, but that would become an alloy, which is not a compound but a mixture, since you can change its composition. Whereas the metallic bonds between two atoms of the same metal form a compound.
      (6 votes)
  • starky tree style avatar for user framikmm6
    Considering the structure of an atom, how are metals different from nonmetals, like why can some atoms share their valence electrons with the whole group and others cannot?
    (4 votes)
    Default Khan Academy avatar avatar for user
    • leaf red style avatar for user Richard
      The main difference between the two groups on the atomic level is that nonmetals are more electronegative than metals. Electronegativity essentially being a measure of how well atoms can hold onto electrons.

      The nonmetals occupy the upper-right corner of the periodic table where electronegativity values are the highest. Electronegativity increases as you move left to right across a period because the effective nuclear charge increases. Having a higher effective clear charge means that negative electrons 'feel' more of the proton's positive charge from the nucleus. And electronegativity also increases as you move from down to up along a group because the number of electron shells decreases. Having more electron shells means that the valence electrons are farther from the nucleus and 'feel' less attraction to the protons.

      This is why metals are more able to lose their electrons in ionic bonds and delocalize their electrons in metallic bonds, since they don't have as strong of a pull on them as non-metals.

      Hope that helps.
      (7 votes)
  • duskpin sapling style avatar for user Shruthi Sankuratri
    How do we name metallic bonds?
    (2 votes)
    Default Khan Academy avatar avatar for user
    • leaf red style avatar for user Richard
      I'm going to assume you mean chemicals which engage in metallic bonding. In which case if it's a pure lump of metal with atoms form the same element, then we just call it by it's element name. So a lump of sodium would just be called sodium metal or pure sodium. In a chemical equation you would see it written as Na(s) where the 's' means its solid. If you gave multiple metal elements engaging in metallic bonding then you have an alloy which have no straightforward systematic nomenclature. They all have their own unique name. An alloy of tin and copper is bronze while an alloy of copper and zine is brass. So alloys are more a memorization trick than a set of nomenclature rules like other chemicals. Hope that helps.
      (9 votes)
  • blobby green style avatar for user JaDonte'H
    Why are metallic bonds weaker than ionic and covalent bonds?
    (3 votes)
    Default Khan Academy avatar avatar for user
    • leaf red style avatar for user Richard
      But they aren’t though. No one type of bond (ionic, covalent, metallic) is always stronger than the others. There are a range of strengths for all types of bonds. There are certain metallic bonds stronger than certain covalent or ionic, and certain covalent and ionic bonds stronger than certain metallic bonds.
      (4 votes)
  • starky seedling style avatar for user nirupan.karki17
    Why don't positive ions formed in mettalic bond repel each other?
    (2 votes)
    Default Khan Academy avatar avatar for user
  • mr pink orange style avatar for user Geethanjali Raguram
    Why the metals loses its electrons in metallic bond?
    Do the metals either lose or gain electrons in metallic bond?
    (5 votes)
    Default Khan Academy avatar avatar for user
  • aqualine ultimate style avatar for user Z
    Why does the metallic bond exist? Like I mean in reference to the electron orbitals. Could the metals not instead just rely on other bonding, like existing as normal atoms unless to achieve a stable configuration.
    (2 votes)
    Default Khan Academy avatar avatar for user
  • stelly orange style avatar for user Volcannon1752
    Let me get this straight.

    Ionic bonding is bonding of a metal and nonmetal, where the nonmetal gains electrons and the metal loses electrons.

    Covalent bonding is bonding of a nonmetal and another nonmetal, where they both share electrons to gain a full valence shell.

    Metallic bonding is bonding of a metal and another metal, where electrons constantly move from atom to atom.

    Did I get all of them right? (I have a hard time paying attention to stuff, so I’ll be surprised if I got it right)
    (2 votes)
    Default Khan Academy avatar avatar for user
    • leaf red style avatar for user Richard
      Mostly. The ionic and covalent bonding is decent, but the metallic bond part needs some addressing.

      Electrons are still in motion no matter the bond type.

      Metallic bonds are essentially covalent bonds, but between atoms with lower electronegativity like metals. The electrons are shared, but instead of the electrons being localized between two bonding atoms (as in a normal covalent bond), they are delocalized among several surrounding atoms which are collectively bonding to each other. These delocalized electrons are commonly referred to as a ‘sea of electrons’.

      Hope that helps.
      (4 votes)

Video transcript

- [Instructor] Now the last type of bond I'm going to talk about is known as the metallic bond, which I think I know a little bit about because I was the lead singer of a metallic bond in high school. I'll talk about that in future videos. But let's just take one of our metallic atoms here. Iron is a good example. Iron is maybe one of the most referred to metals. Let's say we have a bunch of iron atoms. So Fe, Fe, Fe, Fe, hope you can read that. These are all iron atoms. And if they're just atoms by themselves they're going to be neutral. But when they are mushed together, they will form a metallic bond. Makes sense because they're metals. And what's interesting about metallic bonds, I'll draw it down here, is that metals like to share their electrons with the other metals. It kinda forms this sea of electrons. So what it can look like is, each of the irons lose an electron, I'll draw it a little bit bigger. So let's say this is Fe plus, so it has a positive charge. Fe plus has a positive charge. Fe plus, these are all iron ions, you can imagine. Fe plus, and we're imagining that they have this positive charge because they've all contributed an electron to this sea of electrons. So you have an electron here which has a negative charge. And electrons are not this big, but this is just so that you can see it. Electron here that has a negative charge. And so you can imagine these positive ions are attracted to the sea of negativity, the sea of negative electrons. Another way to think about it is, is that metals, when they bond in metallic bonds, they will have overlapping valence electrons. And those valence electrons are not fixed to just one of the atoms, they can move around. And this is what gives metals many of the characteristics we associate with metals. It conducts electricity because these electrons can move around quite easily. It makes them malleable, you can bend it easily. You can imagine these iron ions in this pudding, or this sea of electrons. So you can bend it, it doesn't break. Well if you were to take a bar of a salt right over here, if you were to try to bend it, it's very rigid. It is going to break. So there we have it, the types of bonds. It's important to realize that you can view it as something of a spectrum. At one end, you have things like ionic bonds where one character swipes an electron from another character and says, "Hey, but now we're attracted to each other," and you get something like salt. Or you have covalent bonds where we outright share electrons. And then you have things in between covalent bonds and ionic bonds where the sharing is not so equal and you get polar covalent bonds. And then another form, I guess you could say, of extreme sharing is the metallic bonds where you just have this communal sea of electrons.