Main content
Organic chemistry
Course: Organic chemistry > Unit 11
Lesson 3: Nomenclature and reactions of carboxylic acidsCarboxylic acid nomenclature and properties
Naming carboxylic acids and analyzing their physical properties. Created by Jay.
Want to join the conversation?
- @for the compound 2-hydroxybenzoic acid, shouldn't the carbonyl carbon be carbon no. 1? and then the carbon on the benzene ring is carbon no. 2? 3:31(7 votes)
- In this instance, you can think of the benzene ring as having higher priority than the carboxylic acid. Usually with rings, we want to do that so that we can assign the lowest number to all the substituents on the ring. Let's start by ignoring the hydroxy substituent. If we just had the benzene ring and the carboxylic acid substituent, that would be named benzoic acid or benzenecarboxylic acid. It is far more common to see it called benzoic acid. There is no need to assign a number since the only substituent is the carboxylic acid. When we add the hydroxy group, we now have two substituents. We must decide which gets higher priority on the ring, the carboxylic acid or the hydroxy group. By convention, we assign priority to the carboxylic acid, therefore, the ring carbon to which it is attached, is labeled as carbon #1. We can go counterclockwise around the ring which would assign #6 to the carbon to which the hydroxy group is attached. Wanting to keep this number as low as possible, we move clockwise around the ring and assign #2 to the hydroxy bearing carbon. Therefore, the name of this compound is 2-hydroxybenzoic acid.(13 votes)
- @is Cyclohexanoic acid also a suitable name for Cyclohexanecarboxylic acid? 5:00(6 votes)
- No it is not ...
Since here we are not numbering the acid functional group because of which the carboxylic acid group becomes a substituent .and as a substituent the carboxylic acid group can't becomeoic
acid .
For example in
HOOC-CH2-CH(C00H)-CH2-COOH is Propane-1,2,3-tricarboxylic acid(3 votes)
- What about the second hydrogen and oxygen in ethanol? 7:17
Wont they be forming a hydrogen bond??(5 votes)- They would form a hydrogen bond with another molecule of ethanol(1 vote)
- Can the 4th compound be called ( cyclohexyl ethanoic acid) ?(2 votes)
- In conh2-ch2-cooh, is it a propanoic or ethanoic acid? Do we count carbamoyl c as part of the chain?(2 votes)
- I think we have to count the carbamoyl carbon as part of the chain,
By analogy with what I know of naming, this is my argument.
CH₃CH₂COOH is propanoic acid.
CH₃CH₂CONH₂ is propanamide.
HOCOCH₂COOH is propanedioic acid.
H₂NCOCH₂CONH₂ is propanediamide.
So, the official name of H₂NCOCH₂COOH is probably propanedioic acid monoamide.
You are more likely to see it called by its common name, malonic acid monoamide.(3 votes)
- At, why isn't it 2-phenolbenzoic acid instead of 2-hydroxybenzoic acid? Shouldn't the OH for labeled #2 be named a phenol since it's attached to a benzene ring? 3:24(2 votes)
- Phenol can only be used as a base name not as a substituent like that.(2 votes)
- Hi, if the carboxylic acid was attached to a cycloalkane, which would act as the parent chain? for example, if i had a cyclopentane with a carboxy group four carbons away, how would that be named?(2 votes)
- Carboxylic acid groups have a very high priority, so in this case that will be the base of the name.
https://en.wikipedia.org/wiki/IUPAC_nomenclature_of_organic_chemistry#Order_of_precedence_of_groups
So, if I'm understanding your description correctly the systematic name would be 4-cyclopentylbutanoic acid,
http://www.chemspider.com/Chemical-Structure.13115828.html(2 votes)
- why you have put the e at the last of the ethanedioic acid(2 votes)
- Is SOCL2 a electrophlie or nucleophile and wt abt PCL3 n PCL5?(2 votes)
- What is filled in a home cylinder ?(1 vote)
- lpg liquefied petroleum gas which occurs above petroleum(2 votes)
Video transcript
Voiceover: Let's look at the nomenclature and physical properties
of carboxylic acids. We'll start with nomenclature. If we wanted to name this carboxylic acid, it's the simplest one possible. There's one carbon; a one
carbon carboxylic acid. If we had a one carbon alkane,
we would call that methane. To name a carboxylic acid,
you drop the E ending and add oic acid. This one would be methanoic acid. Let me go ahead and write this out. Methanoic acid. You can see we dropped the E
and added oic and then acid. Methanoic acid is the IUPAC
name for this molecule. The common name for this is formic acid, which is what you'll hear more often. Formic acid. The name comes from the Latin word for ant because formic acid is found in ant venom. There are lots of really
cool carboxylic acids with interesting common names,
such as this example, here. Let's look at this one. A two carbon carboxylic acid. Using IUPAC nomenclature,
that would be ethanoic acid. It'd be ethane, drop the E, add oic acid. Ethanoic acid. The common name for this is acetic acid. Once again, that's the one
that you will hear more often. Acetic acid. This name comes in the
Latin word for vinegar because vinegar is just a dilute solution of acetic acid in water. Let's name this one down here. You'll want to find the
longest carbon chain that includes the carbon
of your carboxylic acid. That's going to make this carbon over here carbon number one. Two, three, four, five. A five carbon carboxylic acid. That would be pentanoic acid. Go ahead and write pentanoic acid here. Pentanoic acid. Then we have a bromine on carbon four. It'd be 4 bromo. The full IUPAC name would
be 4-Bromo pentanoic acid. Let's look at this one. Three carbons. This would be carbon
number one, two, and three. A three carbon carboxylic
acid would be propenoic acid. Since we have a double bond present, we need to chance the A to an E. It'd be propenoic acid. Let me go ahead and write this out. It'd be propen. I've got the E here. Propenoic acid, like that. We can just go ahead and put in a 2 here to indicate the start of the double bond. 2-propenoic acid. We don't have to worry about
the stereo chemistry of the double bonds since that's
a monosubstituted double bond. For long carboxylic acid, you would have to think about these stereo chemistry. Let's do some more examples. Let's look at this molecule
over here on the bottom left. We can see there's a benzene ring attached to a carboxylic acid. We've seen this before. We called it benzoic acid. Let's go ahead and start
that as our parent name. We have benzoic acid right here. If we're going to name it as benzoic acid, that gives the carbon attached
to the carboxylic acid carbon number one. Then we want to give our substituent the lowest number possible. Of course, this is going
to carbon number 2. We have [88] OH of carbon 2. It's two 2 hydroxybenzoic acid. 2 hydroxybenzoic acid. Benzoic acid is actually a
common name, but it's again, it's used so frequently
in organic chemistry, it's been incorporated
into IUPAC nomenclature. If we wanted to name this
another way, we could say it's 2-hydroxy or orthohydroxy. We see there's a benzene ring. 2 hydroxybenzene. Then we have our carboxylic acid. 2 hydroxybenzene carboxylic acid is another IUPAC name for this molecule. You don't see people
name it that way usually just because it's so
long and it's much easier just to say benzoic acid. The common name for this
molecule is salicylic acid. Let me go ahead and write that. Salicylic acid is famous
because it's a precursor to Aspirin and wintergreen. The name for salicylic acid
comes from the Latin word for willow tree because
you can get this compound from the bark of the willow tree. The Greeks knew about this. It would reduce fevers and decrease pain. That's, of course, why salicylic acid was transformed into Aspirin. Let's look at this one
over here on the right. Instead of having a benzene ring, we have a cyclohexane ring. This would be a clohexane. Now we have our carboxylic acid over here. We could say cyclohexane
carboxylic acid for this one. Cyclohexane, almost
running out of room, here. Carboxylic acid, like that. Instead of saying benzene carboxylic acid, it's cyclohexane carboxylic acid. What do you do if you
have two carboxylic acids in the same molecule? That's what we have here. We can see there are two carbons present. We go ahead and start by writing ethane. We have two carboxylic acids, so we're going to use di in here. Ethandi, and now oic. Ethanedioic acid would be the
IUPAC name for this molecule. The common name for this
molecule is oxalic acid. Oxalic acid, like that. Let's look at properties
of carboxylic acid. We'll start with boiling points. Let's compare these two molecules in terms of their boiling points. Over here on the left,
we have acetic acid, which has a boiling point of approximately 118 degrees Celsius. Over here on the right, we have ethanol. The boiling point of ethanol is approximately 78 degrees Celsius. Acetic acid has a higher boiling point. We can think about why by
thinking about two molecules of acetic acid interacting
and intermolecular forces that are present. Let's go ahead and draw a
molecule of acetic acid. I'm going to go ahead and draw it. There's my carbonyl. Then we have an oxygen and a hydrogen and on this side, a methyl group. There are opportunities for
a hydrogen bonding, right? There could be a hydrogen bond right here and a hydrogen bond right here. Remember, oxygen is more
electro negative than hydrogen. Oxygen gets a partial negative. The hydrogen gets a partial positive. Then this oxygen over here
is also partially negative. You have these opposite
charges attracting. This partially negatively
charged oxygen attracted to this partially positively
charged hydrogen, here. This is your hydrogen bond. The strongest intermolecular force. The same thing down here. We could think about two
hydrogen bonds forming for two molecules of acetic acid. Over here on the right, we have ethanol. Let's go ahead and draw in
another molecule of ethanol. Here we have our second
molecule of ethanol. We can see there could be
a hydrogen bond right here. Once again, we have our
partially negative oxygen and partially positive hydrogen, partial negative oxygen like that. We have one hydrogen bond. There's more opportunities
for hydrogen bonding in acetic acid than in ethanol. Because there are more
opportunities for hydrogen bonding, there's stronger forces holding
these two molecules together so it takes more energy
to pull them apart. That's the reason why it
has a higher boiling point. Let's think about solubility in water. Let's stick with thinking
about acetic acid right here. We know acetic acid is soluble in water because vinegar in acetic acid in water. If we don't have a lot of carbon, acetic acid only has two carbons, this molecule is polar
enough to dissolve in water. We could show acetic acid
interacting with water. Let me go ahead and draw a
water molecule right here. I'll draw a water molecule over here. There's, of course, some
hydrogen boding that can go on. You can think about a
hydrogen bond right here and hydrogen bond right here. Acetic acid is soluble in water. Water is a polar molecule. Acetic acid is polar enough
to dissolve in water. However, as you increase the number of carbons in your R group, as you increase the number of carbons, you get more carbons and hydrogens. You get more of a non-polar character. The more non-polar you make this molecule, you decrease its solubility in water. Once you get past somewhere
around five or six carbons, you decrease the solubility dramatically. That's just a little bit
into the physical properties and the nomenclature of carboxylic acids.