Main content
Organic chemistry
Course: Organic chemistry > Unit 11
Lesson 3: Nomenclature and reactions of carboxylic acidsReduction of carboxylic acids
How to reduce carboxylic acids using lithium aluminum hydride (and borane). Created by Jay.
Want to join the conversation?
- At, why does the carbon form a bond with hydrogen and why does oxygen form a bond with aluminium? 3:47(15 votes)
- I suppose the reason why is because by doing so the carbon can become more stable without causing any of the other atoms (the oxygen, the hydrogen and the R chain) to become less stable. Because if you look at the molecule before those bonds are made (I.e. The left most molecule) you can see that he wrote in red that the carbon has a slightly positive charge and hence, this molecule isn't as stable as it can be: The carbon isn't neutral because the oxygen (being more electronegative) is stealing some of the electrons. So, in order to help the carbon out an AlH3 Bond comes along and the Al donates an H but to make up for a lost bond the Al takes one of the double bonds between C and O. As a result, the H given by Al goes to the C which lost one of its double bonds with O. This is a good thing that it lost one of those double bonds and makes up for it with Aluminium's donated H because now the carbon has a CO bond and CH bond instead of its two CO bonds. This new combination(a CH and CO bond) would allow carbon to have more fair sharing of electrons with just one CO bond being 'selfish' (as O is more electronegative) rather than two 'selfish' bonds. And, all atoms at the end of the day are happy, this time including carbon. Sorry if my explanation makes what I'm saying sound way more complicated than what it really is.(1 vote)
- In another series of videos, Jay compared LiAlH4 and NaBH4 in terms of reducing power and stated that the first reduces aldehydes, ketones, esters, and carboxylic acid, while the latter reduces aldehydes and ketones only. In this video, he said that BH3 reduces carboxylic acids but not ketones. Wouldn't NaBH4 be able to reduce carboxylic acid once it loses one hydrogen and becomes BH3? Thanks for answering(7 votes)
- I think that's a mistake in the video although not 100% sure. You are right though. It should only reduce the ketone group not the carboxylic acid group.(1 vote)
- Guys a question. What is the spelling of Al ?
Is it Aluminium or Aluminum ?(2 votes)- Aluminum is the american spelling.
Aluminium is the British spelling
so it depends upon your country.(3 votes)
- How would an organic chemist go about using such a reaction? What kind of outcomes could it bring?
I'm really keen to understand some practical applications of these mechanisms (ᵒ̴̶̷̤́◞౪◟ ᵒ̴̶̷̤̀ )(2 votes)- Chemists typically aim to avoid reactions using lialh4 because it is volatile because it gives off H2 which is highly flammable. Lialh4 has also been cited to spontaneously combust. Hope this helps, procedures where it's use is still relevant eludes me but make sure you're careful!(3 votes)
- But you explained this mechanism by completely different way in "preparation of alcohols using LiAlH4"(in "synthesis of alcohols").You didn't form a bond with Al and the oxygen in previous video(3 votes)
- how would a dicarboxylic acid react with LiAlH4?(1 vote)
- I think it will reduce the dicarboxylic acid to a diol... I am not 100% sure though...(4 votes)
- At, I can understand if the hydride attacks the carbonyl carbon, but if it instead attacks the hydrogen of the alcohol group, it'll form H2 gas, which itself would be pretty dangerous as it might cause an explosion. This was the exact same reason Sal gave in an earlier video where he said that LAH can't be used directly with water because it'll result in an explosion. So won't there be an explosion in this case? Thanks :^) 1:30(2 votes)
- Yes, the reaction with water is explosive.
However, in the LAH reduction of a carboxylic acid, a solution of the acid in an ether solvent is slowly added to a solution or stirred suspension of LAH in the same solvent.
The solutions can be cooled and the rate of addition controlled to keep the reaction slow enough that the hydrogen does not explode.(2 votes)
- could we use an acetal protecting group like ohch2ch2oh to protect the ketone and then reduce the carboxylic acid to primary alcohol?(2 votes)
- yes you could. Because LiAlH4 can't reduce ethers. see the section on aldehydes and ketones and then within that "acetal protecting groups". He talks about this I believe(1 vote)
- At, why is the Aluminum not positive if it lost an electron when the hydrogen bonded with the carbon? 4:04(2 votes)
- Because it gained an electron back when the oxygen took both of the electrons in one of the two Carbon-oxygen double bonds and attached it to aluminium. As a result, the carbon is positive but the hydrogen that the aluminium lost comes along with both of the electrons in that previous Al-H bond and shares with carbon thus, in the end, aluminium stays neutral(1 vote)
- At, why does the LiAlH4 not also continue to reduce the other alcohol group? I understand that there's no longer the oxygen bonded to the same carbon (to make that carbon more positive and thus more reactive toward the hydride ion), but is that enough to reduce the reactivity so much that nothing else happens? 6:45(1 vote)
- My understanding is that the hydroxyl group (from final product) would have to be protonated via an acid-base reaction and leave as water. This, in turn, would create a carbocation, thus permitting the hydride to attacking in an SN1 fashion. However, the reason why this doesn't occur is because SN1 reactions require a stable carbocation - a primary carbocation is not stable.
On the other hand, if hydride were to nucleophilic attach the carbon via SN2 reaction, this would result in five bonds to the central carbon. Once again, this would not work as carbon cannot have more than four bonds. Also, hydroxyl does not make a good leaving group.
Hope this helps! Anyone please feel free to make corrections :)(2 votes)
Video transcript
Voiceover: If you add
lithium aluminum hydride to a carobxylic acid,
and then your work up at a source of protons, you can reduce your carboxylic acid to an alcohol. If you think about the oxidation state of this carbon, if you assigned one, that's this carbon over
here on your alcohol. And if you assigned an
oxidation state here, you'll see there's been a
decrease in the oxidation state. So, there's been a reduction. Lithium aluminum hydride is one way to reduce a carboxylic acid. You could also accomplish
this with borane, and borane is actually
more chemoselective. We'll talk about that
at the end of the video. For right now, let's
focus in on the possible mechanism of lithium aluminum hydride reacting with our carboxylic acid. Let's go ahead and re-draw
our carboxylic acid. I'm gonna go ahead and
put in our carbonyl. And then, we know the acidic proton on our carboxylic acid
is the one on the oxygen. Lithium aluminum hydride
can be a strong base. I'm gonna go ahead and draw it in. So, aluminum with four bonds to hydrogen, giving it a negative one formal charge. Then we have our lithium,
[L I] plus, like that. A hydride we know is a hydrogen with two electrons, and we know
that's a strong base. You can think about these two electrons here taking this proton and leaving these two electrons behind on your oxygen. So an acid-base reaction is probably the first step of this mechanism. If you take a proton
from a carboxylic acid, you're left with a conjugate base, which is the carboxylate anion. So a negative one formal
charge on this oxygen. And we could follow those electrons, so these electrons in magenta move on to this oxygen to form
our carboxylate anion. Lithium is present, so it's probably going to bond with that oxygen. We would also form hydrogen gas. So we would form H two, so
let's show those electrons. So these electrons in
blue, or I could pick up this proton, so that
forms H two, hydrogen gas. And then, we took a bond
away from the aluminum, so the aluminum is now only
bonded to three hydrogens, and that takes away it's formal charge. So, formal charge of
zero now on the aluminum. Now that we've formed
our carboxylate anion, that's going to react with [A L H] three. Let's go ahead and draw in
our carboxylate anion here. We have our carbonyl, we have our R group, and we have our oxygen
with three lone pairs of electrons, so negative
one formal charge. Next, our [A L H] three comes along. This is just one of the
possibilities for the mechanism. We're gonna form a bond between the oxygen here and the aluminum. And we're gonna form a bond between the carbon and the hydrogen. So, if we think about these electrons in red right here, this
carbon is partially positive because the oxygen is withdrawing some electron density from it. So these electrons in here
can move in to form a bond. And, at the same time, these electrons in blue here can move out to form a bond between the oxygen and the aluminum. Let's go ahead and show
the results of that. We would now have our carbon,
it would be tetrahedral. So let's draw it like this. We would have a bond to
this hydrogen right here. So the electrons in red move
in here to form this bond, and then that carbon is still bonded to an oxygen with three
lone pairs of electrons, so it still has a negative
one formal charge, like that. And then we would have our
carbon bonded to this oxygen. This oxygen has two lone
pairs of electrons on it. And we just formed a bond to the aluminum. So the electrons in
blue form our bond here, and the aluminum is still
bonded to two hydrogens. We can go ahead and draw
in those two hydrogens. Alright, if we take these
electrons and move them in here to form our double bond, we would have to push these electrons
off onto our oxygen. So we would have our oxygen
bonded to the aluminum, and we have these two hydrogens here, so the oxygen would now
have three lone pairs of electrons, giving it a
negative one formal charge. The lithium is probably now
going to bond to this oxygen. And we just reformed our carbonyl, right? So let's go ahead and show that. We would form our
carbonyl here, like that. And then we have this hydrogen. Let's show some of those electrons. So, if I say that these
electrons in green here, on this oxygen, move in to
form our carbonyl, right? And then we had the electrons
in red, so this hydrogen is this hydrogen, and we form an aldehyde. We have an aldehyde and we have excess lithium aluminum hydride. The lithium aluminum hydride is going to transfer a hydride to our aldehyde. So we can go ahead and reduce our aldehyde with another lithium aluminum hydride. I'm gonna draw that in. We have lithium aluminum
hydride, so negative one formal charge on the aluminum. Our carbonyl is polarized,
so partially negative oxygen, partially positive
carbon right here. So, once again we can think
about these electrons, these electrons right here,
from attacking this carbon, pushing these electrons in
green off onto the oxygen. Let's get some more room,
to show what happens here. This is what we've seen
in earlier videos here. Now we would have our
carbon bonded to an oxygen. This oxygen now has three
lone pairs of electrons. One of those lone pairs
were the ones in green. I'll draw those in here, like that, giving that a negative one formal charge. We're gonna form a bond between carbon and hydrogen, so I'm gonna show that. Let's use blue here. These electrons and this
hydrogen are a hydride, so lithium aluminum hydride acts as a hydride transfer agent
and transfers these two electrons and this
hydrogen right to our carbon. Then we still had this hydrogen, in red here, bonded to the carbon in red, like that, and then we
had our R group here. The final step, we would just protonate our alkoxide, so we could add something like dilute acid in our work up here. If we add a dilute acid, H three O plus, we go ahead and draw that in, then our alkoxide could pick up a proton, leaving these electrons behind. Protonating our alkoxide would yield our alcohol as our product. Let me go ahead and draw those in. So we would have those two hydrogens, we have an OH, and then
we would have an R group. That's one of the
possibilities for the reduction of a carboxylic acid, with
lithium aluminum hydride. With the end result of
transferring two hydrides, right? So this hydrogen and these electrons, and then also this hydrogen
and these electrons. Both came from lithium aluminum hydride. The mechanism is
definitely more complicated than the one I showed you, but this is a simple way to think about it. Let's look at a practice problem. If we had this compound
over here on the left and we added lithium aluminum hydride and the source of protons in our work up, we just talked about the fact that it would reduce a carboxylic acid. We have a ketone present here as well, and we've seen in earlier videos that lithium aluminum hydride
will reduce the ketone as well, and turn that into
an alcohol on our work up. So when we draw the product, we have our benzene ring, we would turn that ketone into a secondary alcohol,
as we've seen before. Then the carboxylic acid here would turn into a primary alcohol. Let's show some of these carbons. This carbon right here is
this carbon, and then let's do this carbon right here,
in red, is this carbon. We reduced both functional groups using lithium aluminum hydride. If we did this reaction
with borane, so [B H] three instead, borane is actually chemoselective for the carboxylic acid group only. So it's only going to reduce this. If we draw the product using borane, we would have our benzene
ring, and the borane wouldn't touch the ketone,
so that is left here. It would reduce the carboxylic acid, so we would turn that
into a primary alcohol. So once again, this carbon
in red is this carbon. Borane is considered to be a
little bit better sometimes, because of its ability to
be chemoselective, right? It will only reduce your
carboxylic acid group, in this case, and that's very beneficial sometimes, when you're not looking to reduce other parts of your molecule.